-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_times.py
executable file
·353 lines (292 loc) · 16.2 KB
/
plot_times.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import logging
import numpy as np
import matplotlib.pyplot as plt
import json
import os
from typing import List, Optional, cast
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
TIMES_FOLDER_PATH = './Times results'
def save_dataset_img(dataset: str, sufix: str):
dataset_fig_path = dataset.rstrip('.json') + sufix + '.png'
final_path = os.path.join(TIMES_FOLDER_PATH, dataset_fig_path)
plt.savefig(final_path)
print(f'Saved "{final_path}"')
def store_mean_and_std(values_y: List[float], y: List[float], y_err: List[float], y_std_err: List[float]):
"""
Computes the mean and std of Y values and stores them in y and y_err respectively
:param values_y: Values to compute mean and std
:param y: Y list where means are stored
:param y_err: List where std are stored
:param y_std_err: List where std / sqrt(n) are stored
"""
std_error = np.std(values_y, ddof=1) / np.sqrt(len(values_y))
mean = cast(float, np.mean(values_y))
std_error = cast(float, std_error)
std_error = round(std_error, 3)
mean = round(mean, 3)
std = cast(float, np.std(values_y))
std = round(std, 3)
y.append(mean)
y_err.append(std)
y_std_err.append(std_error)
def plot_dataset(title: str, dataset: str, time_field: str = 'execution_times', fix_min_max: bool = True, save_fig: bool = False):
"""
Plots time data
:param title: Chart title
:param dataset: JSON dataset to get the data
:param time_field: Time field to show in chart. Default = 'execution_times'
:param fix_min_max: If True fixes the min and max Y value to better showing. Useful for 'execution_times' \
as time field
"""
# Reads and parses JSON results
dataset_path = os.path.join(TIMES_FOLDER_PATH, dataset)
with open(dataset_path, 'r') as file:
content = json.loads(file.read())
n_features = np.array(content['n_features'])
execution_times = np.array(content[time_field])
# idle_times = content['idle_times'] # TODO: check if needed
# Sorts by number of features ascending preserving the order in all the lists
arr1inds = n_features.argsort()
n_features = n_features[arr1inds[::]]
execution_times = execution_times[arr1inds[::]]
x: List[int] = []
last_n: Optional[int] = None
y: List[float] = []
values_y = []
y_err: List[float] = []
y_std_err: List[float] = []
scatter_x = []
scatter_y = []
# Computes X, Y and error values
for (cur_n, cur_y) in zip(n_features, execution_times):
if np.isnan(cur_n) or np.isnan(cur_y):
logging.warning(f'Found a NaN! X = {cur_n} | Y = {cur_y}')
scatter_x.append(cur_n)
scatter_y.append(cur_y)
if cur_n != last_n:
last_n = cur_n
x.append(cur_n)
# If it's not the first case, computes the mean and std
if len(values_y) > 0:
store_mean_and_std(values_y, y, y_err, y_std_err)
values_y = []
else:
values_y.append(cur_y)
# Stores last iteration
store_mean_and_std(values_y, y, y_err, y_std_err)
# Replaces NaNs with mean
y_avg = np.nanmean(y)
inds = np.where(np.isnan(y))
y = np.array(y)
y[inds] = y_avg
y = y.tolist()
# Scatter plot
fig, ax = plt.subplots()
ax.scatter(scatter_x, scatter_y)
plt.title(f'{title} | scatter')
plt.xlabel("Number of features")
plt.ylabel("Time (seconds)")
if save_fig:
save_dataset_img(dataset, f'_scatter ({time_field})')
# Sets the labels min/max values
min_y = min(np.min(y), 12)
max_y = max(np.max(y), 32)
# Fits a linear model
reshaped = np.array(x).reshape((-1, 1))
model = LinearRegression().fit(reshaped, y)
y_pred_linear = model.predict(reshaped)
# Fits a Polynomial model
x_ = PolynomialFeatures(degree=2, include_bias=False).fit_transform(reshaped)
poly_model = LinearRegression().fit(x_, y)
y_pred_poly = poly_model.predict(x_)
# Plot with std
# fig, ax = plt.subplots()
# ax.errorbar(x, y, yerr=y_err, capsize=4)
# plt.plot(x, y_pred_linear, label='Linear')
# plt.plot(x, y_pred_poly, label='Polynomial')
# plt.legend()
# plt.ylim(min_y, max_y)
# plt.title(f'{title} with std')
# plt.xlabel("Number of features")
# plt.ylabel("Time (seconds)")
# Plot with std_error (https://www.statology.org/error-bars-python/)
fig, ax = plt.subplots()
ax.errorbar(x, y, yerr=y_std_err, capsize=4)
plt.plot(x, y_pred_linear, label='Linear')
plt.plot(x, y_pred_poly, label='Polynomial')
plt.legend()
if fix_min_max:
plt.ylim(min_y, max_y)
plt.title(f'{title} with std "normalized" (using field "{time_field}")')
plt.xlabel("Number of features")
plt.ylabel("Time (seconds)")
if save_fig:
save_dataset_img(dataset, f'_std_normalized ({time_field})')
def plot_time_by_iteration(title: str, dataset: str, save_fig: bool = False):
# Reads and parses JSON results
dataset_path = os.path.join(TIMES_FOLDER_PATH, dataset)
with open(dataset_path, 'r') as file:
content = json.loads(file.read())
n_features = np.array(content['n_features'])
time_by_iteration = np.array(content['times_by_iteration'])
# Sorts by number of features ascending preserving the order in all the lists
arr1inds = n_features.argsort()
n_features = n_features[arr1inds[::]]
time_by_iteration = time_by_iteration[arr1inds[::]]
scatter_x = []
scatter_y = []
# Computes X, Y and error values
for (cur_n, cur_y) in zip(n_features, time_by_iteration):
scatter_x.append(cur_n)
scatter_y.append(cur_y)
# Scatter plot
fig, ax = plt.subplots()
ax.scatter(scatter_x, scatter_y)
plt.title(f'{title} (times by iteration)')
plt.xlabel("Number of features")
plt.ylabel("Time (seconds)")
if save_fig:
save_dataset_img(dataset, '_time_by_iteration')
def plot_num_of_iteration(title: str, dataset: str, save_fig: bool = False):
"""Plots the number of iterations (Y) by number of features (X)"""
# Reads and parses JSON results
dataset_path = os.path.join(TIMES_FOLDER_PATH, dataset)
with open(dataset_path, 'r') as file:
content = json.loads(file.read())
n_features = np.array(content['n_features'])
num_of_iterations = np.array(content['num_of_iterations'])
# Sorts by number of features ascending preserving the order in all the lists
arr1inds = n_features.argsort()
n_features = n_features[arr1inds[::]]
num_of_iterations = num_of_iterations[arr1inds[::]]
scatter_x = []
scatter_y = []
# Computes X, Y and error values
for (cur_n, cur_y) in zip(n_features, num_of_iterations):
scatter_x.append(cur_n)
scatter_y.append(cur_y)
# Scatter plot
fig, ax = plt.subplots()
ax.scatter(scatter_x, scatter_y)
plt.title(f'{title} (number of iterations)')
plt.xlabel("Number of features")
plt.ylabel("Number of iterations")
if save_fig:
save_dataset_img(dataset, '_number_of_by_iteration')
def main():
# Explicaciones de cada JSON en el archivo README.txt dentro de la carpeta 'Times results'
# plot_dataset('200 stars by iteration (30 iterations)', '200_stars_30_it_2022-04-01_05_18_48_times.json')
# plot_dataset('Sequential (30 iterations)', 'Sequential_30_it_2022-03-30_20_55_03_times.json')
# plot_dataset('Complete (30 iterations)', 'Completo_2022-03-24_15_09_59_times.json')
# plot_dataset('Sequential with max_iter = 10 in SVM (30 iterations)', 'Seq_SVM_10_max_iter_30_it_2022-04-05_04_24_25_times.json')
# plot_dataset('With external process (30 iterations)', 'With_process_30_it_2022-04-08_02_16_34_times.json')
# plot_dataset('With external process (30 iterations). Logs with DateStamp', 'With_process_30_it_datestamps_2022-04-09_09_24_41_times.json')
# plot_dataset('With external process (30 iterations). G1GC', 'With_process_G1GC_2022-04-10_03_02_22_times.json')
# plot_dataset('Con broadcast', 'Broadcast_2022-04-13_05_59_44_times.json')
# plot_dataset('Sin excepciones para evitar NaNs', 'Sin_excepciones_2022-04-13_15_34_47_times.json')
# plot_dataset('Sin excepciones para evitar NaNs y con DF en disco', 'Con_DF_en_disco_5_it_2022-04-13_18_47_18_times.json')
# plot_dataset('Sin excepciones, nro de features randomizado', 'Randomized_30_it_2022-04-14_11_07_34_times.json')
# plot_dataset('Sin excepciones, nro de features randomizado, DF en disco', 'Randomized_30_it_df_on_disk_2022-04-15_11_31_52_times.json')
# plot_dataset('Sleep 1 seg', 'Sleep_1_5_it_2022-04-19_14_13_43_times.json')
# plot_dataset('N_JOBS = 1', 'N_JOBS_1_5_it_2022-04-19_20_25_18_times.json')
# plot_dataset('N_JOBS = 1', 'N_JOBS_1_5_it_2022-04-19_20_25_18_times.json')
# plot_dataset('N_JOBS = 1 ascending', 'N_JOBS_1_ascending_2022-04-20_19_53_08_times.json')
# plot_dataset('N_JOBS = 1 ascending, max_iter=10', 'N_JOBS_1_ascending_max_iter_1_2022-04-21_18_51_06_times.json')
# plot_dataset('2 workers, no random state (30 iterations)', '2_workers_no_random_state_30_it_2022-04-22_11_44_44_times.json')
# plot_dataset('With LockFile (5 iterations)', 'With_lock_5_it_2022-05-06_20_05_26_times.json')
# plot_dataset('With LockFile absolute path (5 iterations)', 'With_locker_5_it_absolute_path_2022-05-09_21_00_14_times.json')
# plot_dataset('With LockFile absolute path (30 iterations)', 'With_lock_30_it_2022-05-10_09_08_28_times.json')
# plot_dataset('With LockFile, features randomized (30 iterations)', 'With_lock_randomized_30_it_2022-05-14_03_35_55_times.json')
# plot_dataset('With times by iterations (30 iterations)', 'Times_by_iteration_30_it_2022-06-28_09_35_57_times.json')
# plot_time_by_iteration('With times by iterations (30 iterations)', 'Times_by_iteration_30_it_2022-06-28_09_35_57_times.json')
# plot_time_by_iteration('With times by iterations and test (3 iterations)', 'Times_by_iteration_and_test_3_it_2022-06-28_16_04_29_times.json')
# plot_dataset(
# 'Test time (3 iterations)',
# 'Times_by_iteration_and_test_3_it_2022-06-28_16_04_29_times.json',
# time_field='test_times',
# fix_min_max=False
# )
# plot_time_by_iteration('Test time (30 iterations)',
# 'Times_by_iteration_and_test_30_it_2022-06-29_05_52_02_times.json')
# plot_dataset(
# 'Test time (30 iterations)',
# 'Times_by_iteration_and_test_30_it_2022-06-29_05_52_02_times.json',
# time_field='test_times',
# fix_min_max=False
# )
# Times_by_iteration_and_num_of_iter_3_it_2022-06-30_14_54_45_times.json
# plot_time_by_iteration('With num of it (3 iterations)',
# 'Times_by_iteration_and_num_of_iter_3_it_2022-06-30_14_54_45_times.json')
# plot_num_of_iteration('With num of it (3 iterations)',
# 'Times_by_iteration_and_num_of_iter_3_it_2022-06-30_14_54_45_times.json')
# plot_dataset(
# 'With num of it (3 iterations)',
# 'Times_by_iteration_and_num_of_iter_3_it_2022-06-30_14_54_45_times.json',
# time_field='test_times',
# fix_min_max=False
# )
# Times and metrics
# Optimizer = AVLTree | Kernel = cosine
# title = 'Optimizer = AVLTree | Kernel = cosine (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_avltree_kernel_cosine_30_it_with_training.json'
# title_c_index = 'C-index | Optimizer = AVLTree | Kernel = cosine (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_avltree_kernel_cosine_30_it_with_training_fitness.json'
# Optimizer = AVLTree | Kernel = linear
# title = 'Optimizer = AVLTree | Kernel = linear (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_avltree_kernel_linear_30_it_with_training.json'
# title_c_index = 'C-index | Optimizer = AVLTree | Kernel = linear (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_avltree_kernel_linear_30_it_with_training_fitness.json'
# Optimizer = AVLTree | Kernel = poly
# title = 'Optimizer = AVLTree | Kernel = poly (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_avltree_kernel_poly_30_it_with_training.json'
# title_c_index = 'C-index | Optimizer = AVLTree | Kernel = poly (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_avltree_kernel_poly_30_it_with_training_fitness.json'
# Optimizer = AVLTree | Kernel = rbf
title = 'Optimizer = AVLTree | Kernel = rbf (30 iter.)'
json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_avltree_kernel_rbf_30_it_with_training.json'
title_c_index = 'C-index | Optimizer = AVLTree | Kernel = rbf (30 iter.)'
json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_avltree_kernel_rbf_30_it_with_training_fitness.json'
# Optimizer = AVLTree | Kernel = sigmoid
# title = 'Optimizer = AVLTree | Kernel = sigmoid (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_avltree_kernel_sigmoid_30_it_2022-07-19_06_07_52_times.json'
# TODO: it doesn't work. Too much NaNs values
# title_c_index = 'C-index | Optimizer = AVLTree | Kernel = sigmoid (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_avltree_kernel_sigmoid_30_it_fitness.json'
# Optimizer = RBTree | Kernel = cosine
# title = 'Optimizer = RBTree | Kernel = cosine (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_rbtree_kernel_cosine_30_it_2022-08-01_18_02_12_times.json'
# title_c_index = 'C-index | Optimizer = RBTree | Kernel = cosine (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_rbtree_kernel_cosine_30_it_fitness.json'
# Optimizer = RBTree | Kernel = linear
# title = 'Optimizer = RBTree | Kernel = linear (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_rbtree_kernel_linear_30_it_2022-07-22_23_39_13_times.json'
# title_c_index = 'C-index | Optimizer = RBTree | Kernel = linear (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_rbtree_kernel_linear_30_it_fitness.json'
# Optimizer = RBTree | Kernel = poly
# title = 'Optimizer = RBTree | Kernel = poly (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_rbtree_kernel_poly_30_it_2022-07-23_18_56_03_times.json'
# title_c_index = 'C-index | Optimizer = RBTree | Kernel = poly (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_rbtree_kernel_poly_30_it_fitness.json'
# Optimizer = RBTree | Kernel = rbf
# title = 'Optimizer = RBTree | Kernel = rbf (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_rbtree_kernel_rbf_30_it_2022-07-25_13_25_06_times.json'
# title_c_index = 'C-index | Optimizer = RBTree | Kernel = rbf (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_rbtree_kernel_rbf_30_it_fitness.json'
# Optimizer = RBTree | Kernel = sigmoid
# title = 'Optimizer = RBTree | Kernel = sigmoid (30 iter.)'
# json_path = 'Times_30_it_diff_svms_training_fitness/optimizer_rbtree_kernel_sigmoid_30_it_2022-07-29_08_39_13_times.json'
# TODO: it doesn't work. Too much NaNs values
# title_c_index = 'C-index | Optimizer = RBTree | Kernel = sigmoid (30 iter.)'
# json_path_c_index = 'Times_30_it_diff_svms_training_fitness/Logs/logs_times_optimizer_rbtree_kernel_sigmoid_30_it_fitness.json'
# Times
save_img = False
# plot_dataset(title, json_path, save_fig=save_img)
# plot_dataset(f'Test time {title}', json_path, time_field='test_times', fix_min_max=False, save_fig=save_img)
plot_dataset(f'Training fitness {title}', json_path, time_field='train_scores', fix_min_max=False, save_fig=save_img)
# plot_time_by_iteration(f'With num of it {title}', json_path, save_fig=save_img)
# C-Index
# plot_dataset(title_c_index, json_path_c_index, time_field='fitness', fix_min_max=False, save_fig=save_img)
plt.show()
if __name__ == '__main__':
main()