-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblack_friday_hyperparameter_tuning.py
222 lines (177 loc) · 9.21 KB
/
black_friday_hyperparameter_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Define Optuna objective function
import keras
import mlflow.tensorflow
from autokeras.preprocessors.common import AddOneDimension
from sklearn.model_selection import train_test_split
from tabulate import tabulate
keras.saving.register_keras_serializable()(AddOneDimension)
import logging
import numpy as np
import mlflow
import tensorflow as tf
import optuna
from sklearn.metrics import mean_squared_error
current_trial = 0;
def objective(trial, X_train, X_val, y_train, y_val, max_epochs=30):
try:
# Convert Pandas DataFrame to NumPy array
X_train_np, X_val_np = X_train.to_numpy(), X_val.to_numpy()
y_train_np, y_val_np = y_train.to_numpy(), y_val.to_numpy()
# Check if NaNs exist after conversion to NumPy
print("NaNs in X_train_np:", np.isnan(X_train_np).sum())
print("NaNs in X_val_np:", np.isnan(X_val_np).sum())
print("NaNs in y_train_np:", np.isnan(y_train_np).sum())
print("NaNs in y_val_np:", np.isnan(y_val_np).sum())
print("Inf in X_train_np:", np.isinf(X_train_np).sum())
print("Inf in X_val_np:", np.isinf(X_val_np).sum())
print("Inf in y_train_np:", np.isinf(y_train_np).sum())
print("Inf in y_val_np:", np.isinf(y_val_np).sum())
# Suggest hyperparameters
epochs = trial.suggest_int("epochs", 1, max_epochs) # More epochs for better tuning
learning_rate = trial.suggest_float("learning_rate", 1e-4, 0.1, log=True)
batch_size = trial.suggest_categorical("batch_size", [16, 32, 64, 128]) # Optimize batch size
optimizer_name = trial.suggest_categorical("optimizer", ["adam", "rmsprop", "sgd"]) # Test different optimizers
dropout_rate = trial.suggest_float("dropout_rate", 0.0, 0.5) # Prevent overfitting
global current_trial
current_trial = current_trial + 1
print(f"Starting hyperparameter search trial {current_trial}")
print(f"Trial params: epochs={epochs}, lr={learning_rate}, "
f"batch_size={batch_size}, optimizer={optimizer_name}, dropout={dropout_rate}")
# Select optimizer
if optimizer_name == "adam":
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
elif optimizer_name == "rmsprop":
optimizer = tf.keras.optimizers.RMSprop(learning_rate=learning_rate)
else:
optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9)
best_model = tf.keras.models.load_model("models/best_autokeras_model.keras")
# Compile the modified model
best_model.compile(optimizer=optimizer, loss="mse")
# Track trials using a custom callback
class TrialLogger(tf.keras.callbacks.Callback):
trial_count = 0 # Track trial numbers
def on_train_begin(self, logs=None):
TrialLogger.trial_count += 1
print(f"Trial #{TrialLogger.trial_count} started...")
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
print(
f"Epoch {epoch + 1}/{epochs} - Loss: {logs.get('loss', 'N/A')} - Val Loss: {logs.get('val_loss', 'N/A')}")
def on_train_end(self, logs=None):
print(f"Trial #{TrialLogger.trial_count} completed!")
# Extract model details after the trial ends
trial_model = self.model
if trial_model is not None:
num_layers = len(trial_model.layers)
print(f"Trial #{TrialLogger.trial_count} Model has {num_layers} layers.")
model_layers = [[layer.name, str(layer.output.shape), f"{layer.count_params():,}"] for layer in
trial_model.layers]
table = tabulate(model_layers, headers=["Layer (type)", "Output Shape", "Param #"], tablefmt="grid")
print(f"\nTrial #{TrialLogger.trial_count} Model Summary:\n{table}")
# Early stopping callback
early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=3,
restore_best_weights=True)
# Train the model
best_model.fit(X_train_np, y_train_np, epochs=epochs, batch_size=batch_size, callbacks=[TrialLogger(), early_stopping], verbose=1)
# Evaluate the model
y_pred = best_model.predict(X_val_np).flatten()
rmse = np.sqrt(mean_squared_error(y_val_np, y_pred))
print(f"Trial {current_trial} RMSE: {rmse:.4f}")
# Log parameters and metrics to MLflow
mlflow.set_experiment("AutoML Hyperparameter Optimization")
with mlflow.start_run(nested=True):
mlflow.log_params({
"epochs": epochs,
"learning_rate": learning_rate,
"batch_size": batch_size,
"optimizer": optimizer_name,
"dropout_rate": dropout_rate})
mlflow.log_metric("rmse", rmse)
return rmse # Optuna minimizes RMSE
except Exception as e:
logging.error(f"Trial failed: {e}")
return np.inf
def check_nan(df, name):
nan_cols = df.columns[df.isna().any()].tolist() # Get columns with NaNs
if nan_cols:
print(f"⚠️ {name} contains NaN values in columns: {nan_cols}")
else:
print(f"✅ {name} has no NaN values.")
# Function to run Optuna tuning
def optimize_autokeras_model_using_optuna(X, y, timeout=600, max_trials=20, max_epochs=20):
print("\n Starting Optuna hyperparameter tuning for AutoKeras...")
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
study = optuna.create_study(direction="minimize")
# Check each dataset
check_nan(X_train, "X_train")
check_nan(X_val, "X_test")
check_nan(y_train.to_frame(), "y_train") # Convert Series to DataFrame
check_nan(y_val.to_frame(), "y_test") # Convert Series to DataFrame
study.optimize(lambda trial: objective(trial, X_train, X_val, y_train, y_val, max_epochs=max_epochs),
timeout=timeout, n_trials=max_trials)
print(f"Best Parameters: {study.best_params}")
mlflow.set_experiment("AutoML Hyperparameter Optimization")
mlflow.log_params(study.best_params)
mlflow.log_metric("best_rmse", study.best_value)
# Retrain the best model with optimal hyperparameters
best_model, best_preds = train_best_model(X_train, X_val, y_train, y_val, study.best_params)
# Export the model before logging
# Ensure `best_model` is an AutoKeras model before calling export_model()
if hasattr(best_model, "export_model"):
exported_model = best_model.export_model() # AutoKeras models need exporting
else:
exported_model = best_model # Already a Keras model
# Log the trained model to MLflow
mlflow.tensorflow.log_model(
exported_model,
artifact_path="autokeras_model"
)
return best_model, study.best_params, best_preds
def train_best_model(X_train, X_test, y_train, y_test, best_params):
print("\nTraining the best AutoKeras model with optimized hyperparameters...")
# Convert DataFrame to NumPy array
X_train_np, X_test_np = X_train.to_numpy(), X_test.to_numpy()
y_train_np, y_test_np = y_train.to_numpy(), y_test.to_numpy()
# Check if NaNs exist after conversion to NumPy
print("NaNs in X_train_np:", np.isnan(X_train_np).sum())
print("NaNs in X_val_np:", np.isnan(X_test_np).sum())
print("NaNs in y_train_np:", np.isnan(y_train_np).sum())
print("NaNs in y_val_np:", np.isnan(y_test_np).sum())
print("Inf in X_train_np:", np.isinf(X_train_np).sum())
print("Inf in X_val_np:", np.isinf(X_test_np).sum())
print("Inf in y_train_np:", np.isinf(y_train_np).sum())
print("Inf in y_val_np:", np.isinf(y_test_np).sum())
# 🔹 **Load the best AutoKeras model**
best_model = tf.keras.models.load_model("models/best_autokeras_model.keras")
# 🔹 Modify Dropout layers (if present and dropout_rate exists in best_params)
if "dropout_rate" in best_params:
for layer in best_model.layers:
if "dropout" in layer.name.lower():
layer.rate = best_params["dropout_rate"]
# 🔹 **Compile with best hyperparameters**
best_model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=best_params["learning_rate"]),
loss="mse"
)
# 🔹 **Train the model using best parameters**
best_model.fit(
X_train_np, y_train_np,
epochs=best_params["epochs"],
batch_size=best_params["batch_size"],
verbose=1 # Show training progress
)
# Get the best model
best_model.summary()
# Extract model summary and log it
model_layers = [[layer.name, str(layer.output.shape), f"{layer.count_params():,}"] for layer in best_model.layers]
table = tabulate(
model_layers,
headers=["Layer (type)", "Output Shape", "Param #"],
tablefmt="grid"
)
print(f"\n Best Model after tuning Summary:\n{table}")
# 🔹 **Evaluate the final model**
final_predictions = best_model.predict(X_test_np).flatten()
best_model.save("models/best_autokeras_model.keras")
print("\n Completed Training the best AutoKeras model with optimized hyperparameters...")
return best_model, final_predictions