-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblack_friday_util.py
26 lines (17 loc) · 1.02 KB
/
black_friday_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import logging
import numpy as np
import pandas as pd
def print_10_predictions(model_before_tuning, tuned_model, X_test, y_test):
logging.info("Selecting 10 random samples for prediction comparison...")
y_pred_before_tune = model_before_tuning.predict(X_test).flatten()
y_pred_after_tune = tuned_model.predict(X_test).flatten()
valid_positions = np.arange(len(y_test)) # Ensure positional indexing
random_positions = np.random.choice(valid_positions, size=10, replace=False)
random_indices = y_test.index[random_positions] # Convert positions to dataset indices
df_comparison = pd.DataFrame({
"Before Tuning": y_pred_before_tune[random_positions], # Predictions before tuning
"After Tuning": y_pred_after_tune[random_positions], # Predictions after tuning
"Actual Test": y_test.loc[random_indices].values # Actual test values
})
logging.info("\n📊 Random 10 Predictions - Before vs After Tuning vs Actual:")
logging.info(f"\n{df_comparison.to_string(index=False)}")