-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwolf_algorithm.py
186 lines (148 loc) · 5.49 KB
/
wolf_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from dataclasses import dataclass
import dataclasses
from copy import deepcopy
import numpy as np
from PIL import Image
from os import system
@dataclass
class Pixel:
red: int
green: int
blue: int
def gen_rand_pix(self):
self.red = int(np.random.random() * 255)
self.green = int(np.random.random() * 255)
self.blue = int(np.random.random() * 255)
return self
@dataclass
class Picture:
size_x: int
size_y: int
pixels: list[list[Pixel]] = dataclasses.field(init=False)
def __post_init__(self):
pixels = []
for _ in range(self.size_y):
line = []
for _ in range(self.size_x):
r = int(np.random.random() * 255)
g = int(np.random.random() * 255)
b = int(np.random.random() * 255)
pix = Pixel(r, g, b)
line.append(pix)
pixels.append(line)
self.pixels = pixels
def flatten(self):
pixels = dataclasses.astuple(self)[2]
flat = []
for line in pixels:
for px in line:
flat.append(px[0])
flat.append(px[1])
flat.append(px[2])
return flat
# could be transfered to Picture class
def save_image(picture: Picture, name: str):
img = Image.frombytes(
"RGB", (picture.size_x, picture.size_y), bytes(picture.flatten())
)
img.save(name)
def rgb_distance_condition(
previous_px: Pixel, current_px: Pixel, new_px: Pixel, epsilon: float
):
def distRGB(px_1: Pixel, px_2: Pixel):
return (
(px_1.red - px_2.red) ** 2
+ (px_1.green - px_2.green) ** 2
+ (px_1.blue - px_2.blue) ** 2
)
cond_1 = distRGB(previous_px, current_px) < epsilon
cond_2 = distRGB(new_px, current_px) != 0.0
return cond_1 and cond_2
def get_rand_pix_index(size_x, size_y):
rand1 = int(np.random.random() * size_x)
rand2 = int(np.random.random() * size_y)
return (rand1, rand2)
def wolf_step(picture: Picture, epsilon, SIZE_X, SIZE_Y, counter_changed_pixels):
random_px_index = get_rand_pix_index(SIZE_X, SIZE_Y)
old_pixel = deepcopy(picture.pixels[random_px_index[0]][random_px_index[1]])
new_pixel = Pixel(0, 0, 0).gen_rand_pix()
picture.pixels[random_px_index[0]][random_px_index[1]] = new_pixel
stack = [random_px_index]
counter_changed_pixels = 0
while stack != []:
cur_px_index = stack.pop()
# LEFT
if cur_px_index[1] != 0:
if rgb_distance_condition(
old_pixel,
picture.pixels[cur_px_index[0]][cur_px_index[1] - 1],
new_pixel,
epsilon,
):
picture.pixels[cur_px_index[0]][cur_px_index[1] - 1] = new_pixel
stack.append((cur_px_index[0], cur_px_index[1] - 1))
counter_changed_pixels += 1
# RIGHT
if cur_px_index[1] != SIZE_X - 1:
if rgb_distance_condition(
old_pixel,
picture.pixels[cur_px_index[0]][cur_px_index[1] + 1],
new_pixel,
epsilon,
):
picture.pixels[cur_px_index[0]][cur_px_index[1] + 1] = new_pixel
stack.append((cur_px_index[0], cur_px_index[1] + 1))
counter_changed_pixels += 1
# UP
if cur_px_index[0] != 0:
if rgb_distance_condition(
old_pixel,
picture.pixels[cur_px_index[0] - 1][cur_px_index[1]],
new_pixel,
epsilon,
):
picture.pixels[cur_px_index[0] - 1][cur_px_index[1]] = new_pixel
stack.append((cur_px_index[0] - 1, cur_px_index[1]))
counter_changed_pixels += 1
# DOWN
if cur_px_index[0] != SIZE_Y - 1:
if rgb_distance_condition(
old_pixel,
picture.pixels[cur_px_index[0] + 1][cur_px_index[1]],
new_pixel,
epsilon,
):
picture.pixels[cur_px_index[0] + 1][cur_px_index[1]] = new_pixel
stack.append((cur_px_index[0] + 1, cur_px_index[1]))
counter_changed_pixels += 1
print(
f"Cluster size: {round(counter_changed_pixels / (SIZE_X * SIZE_Y - 1) * 100, 3)} % ",
end="\r",
)
return counter_changed_pixels
def main():
SIZE_X = 256
SIZE_Y = 256
EPS = 15_000 # distance between colors, maximum: 195 075
SAVE_FREQ = 1 # frequency of saving pictures
picture = Picture(SIZE_X, SIZE_Y)
save_image(picture, "output_raw_images/0.png")
counter_changed_pixels = 0
i = 0
while counter_changed_pixels != SIZE_X * SIZE_Y - 1:
counter_changed_pixels = wolf_step(
picture, EPS, SIZE_X, SIZE_Y, counter_changed_pixels
)
if i % SAVE_FREQ == 0:
save_image(picture, f"output_raw_images/{i+1}.png")
i += 1
# print(f'Cluster size: {counter_changed_pixels / (SIZE_X * SIZE_Y - 1)} %')
# system('clear')
print(
f"Cluster size reached: {round(counter_changed_pixels / (SIZE_X * SIZE_Y - 1) * 100, 3)} % ",
end="\n",
)
print(f"Done. {i} iterations.")
if __name__ == "__main__":
system("mkdir output_raw_images")
main()