Skip to content

Latest commit

 

History

History
515 lines (408 loc) · 11.2 KB

solid.md

File metadata and controls

515 lines (408 loc) · 11.2 KB

⬆️ Go to main menu ⬅️ Previous (Classes) ➡️ Next (DRY)

SOLID

SOLID is the mnemonic acronym introduced by Michael Feathers for the first five principles named by Robert Martin, which meant five basic principles of object-oriented programming and design.

Single Responsibility Principle (SRP)

As stated in Clean Code, "There should never be more than one reason for a class to change". It's tempting to jam-pack a class with a lot of functionality, like when you can only take one suitcase on your flight. The issue with this is that your class won't be conceptually cohesive and it will give it many reasons to change. Minimizing the amount of times you need to change a class is important. It's important because if too much functionality is in one class and you modify a piece of it, it can be difficult to understand how that will affect other dependent modules in your codebase.

Bad:

class UserSettings
{
    private $user;

    public function __construct(User $user)
    {
        $this->user = $user;
    }

    public function changeSettings(array $settings): void
    {
        if ($this->verifyCredentials()) {
            // ...
        }
    }

    private function verifyCredentials(): bool
    {
        // ...
    }
}

Good:

class UserAuth
{
    private $user;

    public function __construct(User $user)
    {
        $this->user = $user;
    }

    public function verifyCredentials(): bool
    {
        // ...
    }
}

class UserSettings
{
    private $user;

    private $auth;

    public function __construct(User $user)
    {
        $this->user = $user;
        $this->auth = new UserAuth($user);
    }

    public function changeSettings(array $settings): void
    {
        if ($this->auth->verifyCredentials()) {
            // ...
        }
    }
}

⬆ back to top

Open/Closed Principle (OCP)

As stated by Bertrand Meyer, "software entities (classes, modules, functions, etc.) should be open for extension, but closed for modification." What does that mean though? This principle basically states that you should allow users to add new functionalities without changing existing code.

Bad:

abstract class Adapter
{
    protected $name;

    public function getName(): string
    {
        return $this->name;
    }
}

class AjaxAdapter extends Adapter
{
    public function __construct()
    {
        parent::__construct();

        $this->name = 'ajaxAdapter';
    }
}

class NodeAdapter extends Adapter
{
    public function __construct()
    {
        parent::__construct();

        $this->name = 'nodeAdapter';
    }
}

class HttpRequester
{
    private $adapter;

    public function __construct(Adapter $adapter)
    {
        $this->adapter = $adapter;
    }

    public function fetch(string $url): Promise
    {
        $adapterName = $this->adapter->getName();

        if ($adapterName === 'ajaxAdapter') {
            return $this->makeAjaxCall($url);
        } elseif ($adapterName === 'httpNodeAdapter') {
            return $this->makeHttpCall($url);
        }
    }

    private function makeAjaxCall(string $url): Promise
    {
        // request and return promise
    }

    private function makeHttpCall(string $url): Promise
    {
        // request and return promise
    }
}

Good:

interface Adapter
{
    public function request(string $url): Promise;
}

class AjaxAdapter implements Adapter
{
    public function request(string $url): Promise
    {
        // request and return promise
    }
}

class NodeAdapter implements Adapter
{
    public function request(string $url): Promise
    {
        // request and return promise
    }
}

class HttpRequester
{
    private $adapter;

    public function __construct(Adapter $adapter)
    {
        $this->adapter = $adapter;
    }

    public function fetch(string $url): Promise
    {
        return $this->adapter->request($url);
    }
}

⬆ back to top

Liskov Substitution Principle (LSP)

This is a scary term for a very simple concept. It's formally defined as "If S is a subtype of T, then objects of type T may be replaced with objects of type S (i.e., objects of type S may substitute objects of type T) without altering any of the desirable properties of that program (correctness, task performed, etc.)." That's an even scarier definition.

The best explanation for this is if you have a parent class and a child class, then the base class and child class can be used interchangeably without getting incorrect results. This might still be confusing, so let's take a look at the classic Square-Rectangle example. Mathematically, a square is a rectangle, but if you model it using the "is-a" relationship via inheritance, you quickly get into trouble.

Bad:

class Rectangle
{
    protected $width = 0;

    protected $height = 0;

    public function setWidth(int $width): void
    {
        $this->width = $width;
    }

    public function setHeight(int $height): void
    {
        $this->height = $height;
    }

    public function getArea(): int
    {
        return $this->width * $this->height;
    }
}

class Square extends Rectangle
{
    public function setWidth(int $width): void
    {
        $this->width = $this->height = $width;
    }

    public function setHeight(int $height): void
    {
        $this->width = $this->height = $height;
    }
}

function printArea(Rectangle $rectangle): void
{
    $rectangle->setWidth(4);
    $rectangle->setHeight(5);

    // BAD: Will return 25 for Square. Should be 20.
    echo sprintf('%s has area %d.', get_class($rectangle), $rectangle->getArea()) . PHP_EOL;
}

$rectangles = [new Rectangle(), new Square()];

foreach ($rectangles as $rectangle) {
    printArea($rectangle);
}

Good:

The best way is separate the quadrangles and allocation of a more general subtype for both shapes.

Despite the apparent similarity of the square and the rectangle, they are different. A square has much in common with a rhombus, and a rectangle with a parallelogram, but they are not subtypes. A square, a rectangle, a rhombus and a parallelogram are separate shapes with their own properties, albeit similar.

interface Shape
{
    public function getArea(): int;
}

class Rectangle implements Shape
{
    private $width = 0;
    private $height = 0;

    public function __construct(int $width, int $height)
    {
        $this->width = $width;
        $this->height = $height;
    }

    public function getArea(): int
    {
        return $this->width * $this->height;
    }
}

class Square implements Shape
{
    private $length = 0;

    public function __construct(int $length)
    {
        $this->length = $length;
    }

    public function getArea(): int
    {
        return $this->length ** 2;
    }
}

function printArea(Shape $shape): void
{
    echo sprintf('%s has area %d.', get_class($shape), $shape->getArea()).PHP_EOL;
}

$shapes = [new Rectangle(4, 5), new Square(5)];

foreach ($shapes as $shape) {
    printArea($shape);
}

⬆ back to top

Interface Segregation Principle (ISP)

ISP states that "Clients should not be forced to depend upon interfaces that they do not use."

A good example to look at that demonstrates this principle is for classes that require large settings objects. Not requiring clients to set up huge amounts of options is beneficial, because most of the time they won't need all of the settings. Making them optional helps prevent having a "fat interface".

Bad:

interface Employee
{
    public function work(): void;

    public function eat(): void;
}

class HumanEmployee implements Employee
{
    public function work(): void
    {
        // ....working
    }

    public function eat(): void
    {
        // ...... eating in lunch break
    }
}

class RobotEmployee implements Employee
{
    public function work(): void
    {
        //.... working much more
    }

    public function eat(): void
    {
        //.... robot can't eat, but it must implement this method
    }
}

Good:

Not every worker is an employee, but every employee is a worker.

interface Workable
{
    public function work(): void;
}

interface Feedable
{
    public function eat(): void;
}

interface Employee extends Feedable, Workable
{
}

class HumanEmployee implements Employee
{
    public function work(): void
    {
        // ....working
    }

    public function eat(): void
    {
        //.... eating in lunch break
    }
}

// robot can only work
class RobotEmployee implements Workable
{
    public function work(): void
    {
        // ....working
    }
}

⬆ back to top

Dependency Inversion Principle (DIP)

This principle states two essential things:

  1. High-level modules should not depend on low-level modules. Both should depend on abstractions.
  2. Abstractions should not depend upon details. Details should depend on abstractions.

This can be hard to understand at first, but if you've worked with PHP frameworks (like Symfony), you've seen an implementation of this principle in the form of Dependency Injection (DI). While they are not identical concepts, DIP keeps high-level modules from knowing the details of its low-level modules and setting them up. It can accomplish this through DI. A huge benefit of this is that it reduces the coupling between modules. Coupling is a very bad development pattern because it makes your code hard to refactor.

Bad:

class Employee
{
    public function work(): void
    {
        // ....working
    }
}

class Robot extends Employee
{
    public function work(): void
    {
        //.... working much more
    }
}

class Manager
{
    private $employee;

    public function __construct(Employee $employee)
    {
        $this->employee = $employee;
    }

    public function manage(): void
    {
        $this->employee->work();
    }
}

Good:

interface Employee
{
    public function work(): void;
}

class Human implements Employee
{
    public function work(): void
    {
        // ....working
    }
}

class Robot implements Employee
{
    public function work(): void
    {
        //.... working much more
    }
}

class Manager
{
    private $employee;

    public function __construct(Employee $employee)
    {
        $this->employee = $employee;
    }

    public function manage(): void
    {
        $this->employee->work();
    }
}

⬆ back to top