forked from awslabs/deeplearning-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
145 lines (127 loc) · 5.35 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: skip-file
""" data iterator for mnist """
import os
import random
import sys
# code to automatically download dataset
#curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
#sys.path.append(os.path.join(curr_path, "../../tests/python/common"))
import get_data
import mxnet as mx
def mnist_iterator(batch_size, input_shape):
"""return train and val iterators for mnist"""
# download data
get_data.GetMNIST_ubyte()
flat = False if len(input_shape) == 3 else True
train_dataiter = mx.io.MNISTIter(
image="data/train-images-idx3-ubyte",
label="data/train-labels-idx1-ubyte",
input_shape=input_shape,
batch_size=batch_size,
shuffle=True,
flat=flat)
val_dataiter = mx.io.MNISTIter(
image="data/t10k-images-idx3-ubyte",
label="data/t10k-labels-idx1-ubyte",
input_shape=input_shape,
batch_size=batch_size,
flat=flat)
return (train_dataiter, val_dataiter)
def cifar10_iterator(batch_size, data_shape, resize=-1):
get_data.GetCifar10()
train = mx.io.ImageRecordIter(
path_imgrec = "data/cifar/train.rec",
# mean_img = "data/cifar/mean.bin",
resize = resize,
data_shape = data_shape,
batch_size = batch_size,
rand_crop = True,
rand_mirror = True)
val = mx.io.ImageRecordIter(
path_imgrec = "data/cifar/test.rec",
# mean_img = "data/cifar/mean.bin",
resize = resize,
rand_crop = False,
rand_mirror = False,
data_shape = data_shape,
batch_size = batch_size)
return train, val
class DummyIter(mx.io.DataIter):
def __init__(self, batch_size, data_shape, batches = 5):
super(DummyIter, self).__init__(batch_size)
self.data_shape = (batch_size,) + data_shape
self.label_shape = (batch_size,)
self.provide_data = [('data', self.data_shape)]
self.provide_label = [('softmax_label', self.label_shape)]
self.batch = mx.io.DataBatch(data=[mx.nd.zeros(self.data_shape)],
label=[mx.nd.zeros(self.label_shape)])
self._batches = 0
self.batches = batches
def next(self):
if self._batches < self.batches:
self._batches += 1
return self.batch
else:
self._batches = 0
raise StopIteration
def dummy_iterator(batch_size, data_shape):
return DummyIter(batch_size, data_shape), DummyIter(batch_size, data_shape)
class ImagePairIter(mx.io.DataIter):
def __init__(self, path, data_shape, label_shape, batch_size=64, flag=0, input_aug=None, target_aug=None):
super(ImagePairIter, self).__init__(batch_size)
self.data_shape = (batch_size,) + data_shape
self.label_shape = (batch_size,) + label_shape
self.input_aug = input_aug
self.target_aug = target_aug
self.provide_data = [('data', self.data_shape)]
self.provide_label = [('label', self.label_shape)]
is_image_file = lambda fn: any(fn.endswith(ext) for ext in [".png", ".jpg", ".jpeg"])
self.filenames = [os.path.join(path, x) for x in os.listdir(path) if is_image_file(x)]
self.count = 0
self.flag = flag
random.shuffle(self.filenames)
def next(self):
from PIL import Image
if self.count + self.batch_size <= len(self.filenames):
data = []
label = []
for i in range(self.batch_size):
fn = self.filenames[self.count]
self.count += 1
image = Image.open(fn).convert('YCbCr').split()[0]
if image.size[0] > image.size[1]:
image = image.transpose(Image.TRANSPOSE)
image = mx.nd.expand_dims(mx.nd.array(image), axis=2)
target = image.copy()
for aug in self.input_aug:
image = aug(image)[0]
for aug in self.target_aug:
target = aug(target)[0]
data.append(image)
label.append(target)
data = mx.nd.concat(*[mx.nd.expand_dims(d, axis=0) for d in data], dim=0)
label = mx.nd.concat(*[mx.nd.expand_dims(d, axis=0) for d in label], dim=0)
data = [mx.nd.transpose(data, axes=(0, 3, 1, 2)).astype('float32')/255]
label = [mx.nd.transpose(label, axes=(0, 3, 1, 2)).astype('float32')/255]
return mx.io.DataBatch(data=data, label=label)
else:
raise StopIteration
def reset(self):
self.count = 0
random.shuffle(self.filenames)