-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
88 lines (65 loc) · 3.07 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import warnings
warnings.filterwarnings("ignore") # Suppress all warnings
from flask import Flask, request, render_template
import pickle
import re
import numpy as np
# Import custom_tokenizer explicitly from the tokenizer_module
from tokenizer_module import custom_tokenizer # Adjust path if necessary
# Initialize the Flask application
app = Flask(__name__, static_folder='core/static', template_folder='core/templates')
# Load the serialized components
try:
with open('core/models/language_model.pkl', 'rb') as model_file:
model = pickle.load(model_file)
with open('core/models/vectorizer.pkl', 'rb') as vectorizer_file:
vectorizer = pickle.load(vectorizer_file)
with open('core/models/label_encoder.pkl', 'rb') as encoder_file:
encoder = pickle.load(encoder_file)
# Reassign the custom tokenizer after loading the vectorizer
vectorizer.tokenizer = custom_tokenizer # Ensure custom tokenizer is used
print("Models, vectorizer, and encoder loaded successfully!")
except Exception as e:
print(f"Error loading model components: {e}")
model = vectorizer = encoder = None
# Define the preprocessing function
def preprocess_text(text):
text = re.sub(r'[^\w\s]', '', text).lower()
text = re.sub(r'\d+', '', text)
return text
@app.route('/', methods=['GET', 'POST'])
def predict_language():
prediction = ''
confidence = ''
if request.method == 'POST':
input_text = request.form['text']
if input_text.strip() == '':
prediction = "Please enter valid text."
else:
try:
# Processing the text and making predictions
processed_text = preprocess_text(input_text)
text_vector = vectorizer.transform([processed_text])
predicted_proba = model.predict_proba(text_vector)
max_proba = np.max(predicted_proba)
confidence_threshold = 0.7 # Set your desired threshold
if max_proba < confidence_threshold:
prediction = ("We are unable to confidently detect the language. We will work on improving our "
"model.")
else:
predicted_label = model.predict(text_vector)
language = encoder.inverse_transform(predicted_label)[0]
prediction = f"The predicted language is: {language}"
confidence = f"Confidence Level: {max_proba * 100:.0f}%"
except Exception as e:
# If any error occurs, render the error page
return render_template('error.html', error_message=f"An error occurred: {str(e)}")
return render_template('index.html', prediction=prediction, confidence=confidence)
@app.errorhandler(500)
def internal_error(error):
return render_template('error.html', error_message="Internal Server Error")
@app.errorhandler(404)
def not_found_error(error):
return render_template('error.html', error_message="Page Not Found")
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5000)