-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulate_new_mutation.py
166 lines (135 loc) · 6.7 KB
/
simulate_new_mutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
Script: simulate a metapopulation with a migration-less burn-in phase, a variable length of evolution (neutral or Axelrod) followed
by the introduction of a new set of features. I am testing two things:
1) What is the probability of emergence of the new feature under each model?
2) What is the speed of emergence of the new feature under each model?
To insert a new mutation:
- select a deme (default: deme 3)
- select an individual at random
- change one of its traits at random to a new value
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from metapypulation.metapopulation import Metapopulation
from metapypulation.subpopulation import Subpopulation
from metapypulation.individual import Individual
total_population = 400
interaction = "neutral_interaction"
N_subpopulations = 8
subpop_size = math.ceil(total_population / N_subpopulations)
deme_of_new_mutation = 3 # 4th deme of 8
new_value = 35
migrations = np.genfromtxt('./configs/stepping_stone_8pop.csv', delimiter=',')
migrations_zero = np.zeros((8,8))
burn_in = 10000
first_epoch = 0
burn_out = 100000 #2000000
replicates = 1000
successes = []
for i in range(1, replicates + 1):
metapop = Metapopulation(N_subpopulations, interaction, migration_matrix = migrations, carrying_capacities=subpop_size)
metapop.populate()
counts_pop_1 = []
counts_pop_2 = []
counts_pop_3 = []
counts_pop_4 = []
counts_pop_5 = []
counts_pop_6 = []
counts_pop_7 = []
counts_pop_8 = []
counts_metapop = []
subpops_with_mutation = []
# BURN-IN PHASE
for t in range(burn_in):
if t%1000 == 0:
counts_pop_1.append(metapop.subpopulations[0].count_traits_sets())
counts_pop_2.append(metapop.subpopulations[1].count_traits_sets())
counts_pop_3.append(metapop.subpopulations[2].count_traits_sets())
counts_pop_4.append(metapop.subpopulations[3].count_traits_sets())
counts_pop_5.append(metapop.subpopulations[4].count_traits_sets())
counts_pop_6.append(metapop.subpopulations[5].count_traits_sets())
counts_pop_7.append(metapop.subpopulations[6].count_traits_sets())
counts_pop_8.append(metapop.subpopulations[7].count_traits_sets())
counts_metapop.append(metapop.metapopulation_count_sets())
subpops_with_mutation.append(0)
# if t%50000 == 0:
# print(f"Gen {t}!")
# for subpopulation in metapop.subpopulations:
# print(f"The current number of sets in pop {subpopulation.id} is {subpopulation.count_traits_sets()}")
# metapop.migrate()
metapop.make_interact()
# FIRST INTERACTION PHASE
for t in range(burn_in, burn_in + first_epoch):
if t%1000 == 0:
counts_pop_1.append(metapop.subpopulations[0].count_traits_sets())
counts_pop_2.append(metapop.subpopulations[1].count_traits_sets())
counts_pop_3.append(metapop.subpopulations[2].count_traits_sets())
counts_pop_4.append(metapop.subpopulations[3].count_traits_sets())
counts_pop_5.append(metapop.subpopulations[4].count_traits_sets())
counts_pop_6.append(metapop.subpopulations[5].count_traits_sets())
counts_pop_7.append(metapop.subpopulations[6].count_traits_sets())
counts_pop_8.append(metapop.subpopulations[7].count_traits_sets())
counts_metapop.append(metapop.metapopulation_count_sets())
subpops_with_mutation.append(0)
# if t%50000 == 0:
# print(f"Gen {t}!")
# for subpopulation in metapop.subpopulations:
# print(f"The current number of sets in pop {subpopulation.id} is {subpopulation.count_traits_sets()}")
metapop.migrate()
metapop.make_interact()
# INTRODUCE NEW INDIVIDUAL
# select tandom individual in a deme
deme_selected = metapop.subpopulations[deme_of_new_mutation]
random_individual_id = np.random.choice(range(deme_selected.get_population_size()))
# change individual first feature
deme_selected.population[random_individual_id].features[0] = new_value
#subpops_with_mutation[-1] = 1
mutation_has_died = False
#
for t in range(burn_in + first_epoch, burn_in + first_epoch + burn_out):
if t%1000 == 0:
counts_pop_1.append(metapop.subpopulations[0].count_traits_sets())
counts_pop_2.append(metapop.subpopulations[1].count_traits_sets())
counts_pop_3.append(metapop.subpopulations[2].count_traits_sets())
counts_pop_4.append(metapop.subpopulations[3].count_traits_sets())
counts_pop_5.append(metapop.subpopulations[4].count_traits_sets())
counts_pop_6.append(metapop.subpopulations[5].count_traits_sets())
counts_pop_7.append(metapop.subpopulations[6].count_traits_sets())
counts_pop_8.append(metapop.subpopulations[7].count_traits_sets())
counts_metapop.append(metapop.metapopulation_count_sets())
feature_tests = []
for subpop in metapop.subpopulations:
feature_tests.append(subpop.is_trait_in_subpopulation(new_value))
if not any(feature_tests):
subpops_with_mutation.append(0)
mutation_has_died = True
else:
subpops_with_mutation.append(sum(feature_tests))
# if t%50000 == 0:
# print(f"Gen {t + burn_in}!")
# for subpopulation in metapop.subpopulations:
# print(f"The current number of sets in pop {subpopulation.id} is {subpopulation.count_traits_sets()}")
# sub_id = []
# for ind in subpopulation.population.individuals:
# sub_id.append(ind.original_deme_id)
# indexes, counts = np.unique(sub_id, return_counts=True)
# print(f"The current deme index present in population {subpopulation.id} are {indexes} with {counts} counts.")
metapop.migrate()
metapop.make_interact()
if mutation_has_died:
print(f"Finished in generation {t + burn_in + first_epoch}")
break
if t == burn_in + first_epoch + burn_out - 1:
print(f"Replicate {i}: mutation present in {subpops_with_mutation[-1]} demes")
successes.append(1)
# plt.plot(subpops_with_mutation)
# plt.xlabel("generations (x1000)")
# plt.ylabel("number of subpopulations where the new trait can be found")
# plt.show()
success = sum(successes)
print(success / replicates)
# plt.plot(subpops_with_mutation)
# plt.xlabel("generations (x1000)")
# plt.ylabel("number of subpopulations where the new trait can be found")
# plt.show()