forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.sh
executable file
·57 lines (43 loc) · 1.96 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/bin/bash
# Copyright 2020 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Fail on any error.
set -e
# Display commands being run.
set -x
TMP_DIR=`mktemp -d`
virtualenv --python=python3.6 "${TMP_DIR}/learning_to_simulate"
source "${TMP_DIR}/learning_to_simulate/bin/activate"
# Install dependencies.
pip install --upgrade -r learning_to_simulate/requirements.txt
# Run the simple demo with dummy inputs.
python -m learning_to_simulate.model_demo
# Run some training and evaluation in one of the dataset samples.
# Download a sample of a dataset.
DATASET_NAME="WaterDropSample"
bash ./learning_to_simulate/download_dataset.sh ${DATASET_NAME} "${TMP_DIR}/datasets"
# Train for a few steps.
DATA_PATH="${TMP_DIR}/datasets/${DATASET_NAME}"
MODEL_PATH="${TMP_DIR}/models/${DATASET_NAME}"
python -m learning_to_simulate.train --data_path=${DATA_PATH} --model_path=${MODEL_PATH} --num_steps=10
# Evaluate on validation split.
python -m learning_to_simulate.train --data_path=${DATA_PATH} --model_path=${MODEL_PATH} --mode="eval" --eval_split="valid"
# Generate test rollouts.
ROLLOUT_PATH="${TMP_DIR}/rollouts/${DATASET_NAME}"
mkdir -p ${ROLLOUT_PATH}
python -m learning_to_simulate.train --data_path=${DATA_PATH} --model_path=${MODEL_PATH} --mode="eval_rollout" --output_path=${ROLLOUT_PATH}
# Plot the first rollout.
python -m learning_to_simulate.render_rollout --rollout_path="${ROLLOUT_PATH}/rollout_test_0.pkl" --block_on_show=False
# Clean up.
rm -r ${TMP_DIR}