-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_c2f.py
52 lines (39 loc) · 1.41 KB
/
predict_c2f.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from argparse import ArgumentParser
from monai.networks.nets import UNet
from pytorch_lightning import Trainer
from datamodules.c2f_datamodule import C2FDataModule
from models.segmentor import Segmentor
def main(params):
base_model = UNet(
spatial_dims=3,
in_channels=1,
out_channels=14,
channels=(8, 16, 32, 64, 128),
strides=(2, 2, 2, 2),
act="relu",
)
checkpoint_path = "checkpoints/c2f-coarse-unet/epoch=85-val/loss=0.45.ckpt"
print("Using checkpoint:", checkpoint_path)
model = Segmentor.load_from_checkpoint(
checkpoint_path, model=base_model, sw_batch_size=16, sw_overlap=0.25
)
dm = C2FDataModule(
num_labels_with_bg=14,
supervised_dir="/mnt/HDD2/flare2022/datasets/FLARE2022/Training/FLARE22_LabeledCase50",
val_ratio=0.2,
predict_dir=params.predict_dir,
output_dir=params.output_dir,
roi_size=(128, 128, 64),
max_workers=4,
batch_size=2,
is_coarse=True,
)
trainer = Trainer(logger=False, accelerator="cpu", max_epochs=-1)
trainer.validate(model, datamodule=dm)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--predict_dir", default="inputs", type=str)
parser.add_argument("--output_dir", default="outputs", type=str)
parser.add_argument("--gpu", default=1, type=int)
args = parser.parse_args()
main(args)