-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNETRDExplorer.py
206 lines (171 loc) · 8.03 KB
/
NETRDExplorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from flask import Flask, jsonify, request, send_file, render_template
import networkx as nx
import pandas as pd
from netrd import dynamics
from flask_restful import Resource, Api
import numpy as np
import netrd.reconstruction as recon
import netrd.distance as distt
reconOptions = ['Random','Correlation Matrix','Regularized Correlation Matrix','Partial Correlation Matrix',
'Free Energy Minimization','Naive Mean Field','Thouless Anderson Palmer','Exact Mean Field',
'Maxium Likelihood Estimation','Covergent Cross Mapping','Mutual Information Matrix','OU Inference',
'Graphical Lasso','Marchenko Pastur','Time Granger Causality', 'Correlation Spanning Tree']
recons = {'Random': recon.RandomReconstructor(),
'Correlation Matrix': recon.CorrelationMatrix(),
'Free Energy Minimization': recon.FreeEnergyMinimization(),
'Correlation Matrix': recon.CorrelationMatrix(),
'Partial Correlation Matrix': recon.PartialCorrelationMatrix(),
'Partial Correlation Influence': recon.PartialCorrelationInfluence(),
'Naive Mean Field': recon.MeanField(),
'Thouless Anderson Palmer': recon.ThoulessAndersonPalmer(),
'Exact Mean Field': recon.MeanField(),
'Maxium Likelihood Estimation': recon.MaximumLikelihoodEstimation(),
'Covergent Cross Mapping': recon.ConvergentCrossMapping(),
'Mutual Information Matrix': recon.MutualInformationMatrix(),
'OU Inference': recon.OUInference(),
'Graphical Lasso': recon.GraphicalLasso(),
'Marchenko Pastur': recon.MarchenkoPastur(),
'Time Granger Causality': recon.TimeGrangerCausality(),
'Correlation Spanning Tree': recon.CorrelationSpanningTree()}
distanceOptions = ['Jaccard','Hamming','Frobenius','Portrait Divergence',
'Ipsen Mikhailov','Hamming Ipsen Mikhailov','Resistance Perturbation','Net Simile', 'Laplacian Spectral']
dist = {'Jaccard': distt.JaccardDistance(),
'Hamming': distt.Hamming(),
'Frobenius': distt.Frobenius(),
'Portrait Divergence': distt.PortraitDivergence(),
'Ipsen Mikhailov': distt.IpsenMikhailov(),
'Hamming Ipsen Mikhailov': distt.HammingIpsenMikhailov(),
'Resistance Perturbation': distt.ResistancePerturbation(),
'Net Simile': distt.NetSimile(),
'Polynomial Dissimilarity': distt.PolynomialDissimilarity(),
'Onion Divergence': distt.OnionDivergence(),
'Quantum Spectral JSD': distt.QuantumJSD(),
'Degree Divergence': distt.DegreeDivergence(),
'Net LSD': distt.NetLSD(),
'Communicability Sequence': distt.CommunicabilityJSD(),
'Non Backtracking Distance': distt.NonBacktrackingSpectral(),
'Delta Con': distt.DeltaCon()}
netGen = {'Ring of Cliques': nx.ring_of_cliques,
'Barabasi Albert Graph': nx.barabasi_albert_graph,
'Erdos Renyi Graph': nx.erdos_renyi_graph,
'Random Geometric Graph' :nx.random_geometric_graph}
timeGen = {'Sherrington Kirkpatrick Ising': dynamics.SherringtonKirkpatrickIsing,
'Branching Model': dynamics.BranchingModel,
'Voter Model': dynamics.VoterModel,
'Single Unbiased Random Walker': dynamics.SingleUnbiasedRandomWalker,
'Ising Glauber': dynamics.IsingGlauber}
app = Flask(__name__)
api = Api(app)
class NetworkGenerator(Resource):
def put(self):
global reconCache
reconCache = {}
gen = request.args.get('gen', default = 'Ring of Cliques', type = str)
cliq = request.args.get('cliq', default = "1", type = str)
size = request.args.get('size', default = "1", type = str)
if gen == 'Erdos Renyi Graph' or gen == 'Random Geometric Graph':
cliq = int(cliq)
size = float(size)
else:
cliq = int(cliq)
size = int(size)
G = netGen[gen](cliq, size)
while not nx.is_connected(G):
G = netGen[gen](cliq, size)
network = nx.node_link_data(G)
return jsonify(network)
class TimeSeries(Resource):
def put(self):
try:
gen = request.args.get('gen', default = 'Sherrington Kirkpatrick Ising', type = str)
network = request.get_json()
G = nx.node_link_graph(network)
len = request.args.get('len', default = 2000, type = int)
dynamics = timeGen[gen]()
ts = dynamics.simulate(G, len)
df = pd.DataFrame(ts)
#plt.imshow(ts,aspect='auto',cmap='Reds')
#plt.savefig('static/hi2.png')
return jsonify(df.to_json(orient='records'))
#return send_file('hi2.png', mimetype='image/png')
except Exception as e:
return str(e)
class Metrics(Resource):
def put(self):
network = request.get_json()
G = nx.node_link_graph(network)
meanDegree = np.mean(list(dict(nx.degree(G)).values()))
return meanDegree
class Scale(Resource):
def put(self):
try:
meth = request.args.get('dist', default = 'Jaccard', type = str)
avgDegree = request.args.get('avg', default = '0', type = str)
avgDegree = float(avgDegree)
reconstructor = recons['Random']
distance = dist[meth]
except Exception as e:
return str(e)
try:
x = request.get_json()
df = pd.DataFrame(x['ts'])
ts = np.array(df)
G = reconstructor.fit(ts, threshold_type='degree', avg_k=avgDegree, binary=True)
res = distance.dist(G,nx.node_link_graph(x['G']))
return str(res)
except Exception as e:
return str(e)
class Reconstructor(Resource):
def put(self, reconID):
try:
recon = request.args.get('recon', default = 'Random', type = str)
avgDegree = request.args.get('avg', default = '0', type = str)
avgDegree = float(avgDegree)
reconstructor = recons[recon]
except Exception as e:
return str(e, 'hi')
if (recon == 'Free Energy Minimization'):
return 'hi'
try:
x = request.get_json()
df = pd.DataFrame(x)
ts = np.array(df)
if (recon == 'Naive Mean Field'):
G = reconstructor.fit(ts, exact=False, threshold_type='degree', avg_k=avgDegree, binary=True)
else:
G = reconstructor.fit(ts, threshold_type='degree', avg_k=avgDegree, binary=True)
return jsonify(nx.node_link_data(G))
except Exception as e:
return str(e, ts.shape)
class Distance(Resource):
def put(self):
try:
graphs = request.get_json()
meth = request.args.get('dist', default = 'Jaccard', type = str)
g1 = request.args.get('g1', default = 'N/A', type = str)
g2 = request.args.get('g2', default = 'N/A', type = str)
g3 = request.args.get('g3', default = 'N/A', type = str)
names = ["Ground Truth",g1,g2,g3]
distance = dist[meth]
df = pd.DataFrame()
graphs = [nx.node_link_graph(graphs['g0']),nx.node_link_graph(graphs['g1']),
nx.node_link_graph(graphs['g2']),nx.node_link_graph(graphs['g3'])]
for i in range(4):
for j in range(4):
#print(i,j,meth.dist(graphs[i],graphs[j]))
df = df.append([[names[i],names[j],distance.dist(graphs[i],graphs[j])]], ignore_index=True)
df.columns = ['group', 'variable', 'value']
return jsonify(df.to_json(orient='records'))
except Exception as e:
return str(e)
api.add_resource(NetworkGenerator, '/network')
api.add_resource(TimeSeries, '/time')
api.add_resource(Reconstructor, '/recon/<string:reconID>')
api.add_resource(Distance, '/distance')
api.add_resource(Metrics, '/metrics')
api.add_resource(Scale, '/scale')
@app.route('/')
def webpage():
return render_template('index.html')
if __name__ == '__main__':
app.run(debug=True)