Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Convert Output to COLMAP FORMAT #30

Open
sp77-1 opened this issue Nov 5, 2024 · 1 comment
Open

Convert Output to COLMAP FORMAT #30

sp77-1 opened this issue Nov 5, 2024 · 1 comment

Comments

@sp77-1
Copy link

sp77-1 commented Nov 5, 2024

Is there any way to convert output pose_final.txt into colmap's camera/images/point3D Format?

Thank you in advance, wonderful work

@ljjTYJR
Copy link

ljjTYJR commented Nov 8, 2024

Here I provide a simple script to convert the result to the COLMAP format

import cv2
import os
from pathlib import Path
import open3d as o3d
import numpy as np
import trimesh

def save_cameras(pose_file, sparse_dir):
    # assume all images are the same
    rgb_files = []
    rots = []
    translations = []
    focal_lengths = []
    confidences = []
    with open(pose_file, 'r') as f:
        for line in f:
            tokens = line.split()
            rgb_files.append(tokens[0])
            qw, qx, qy, qz = [float(t) for t in tokens[1:5]]
            rots.append([qw, qx, qy, qz])
            tx, ty, tz = [float(t) for t in tokens[5:8]]
            translations.append([tx, ty, tz])
            focal_length = float(tokens[8])
            confidence = float(tokens[9])
            focal_lengths.append(focal_length)
            confidences.append(confidence)

    rgb_image = cv2.imread(rgb_files[0])
    imgs_shape = rgb_image.shape #(H,W,C)

    print(imgs_shape)
    target_file=os.path.join(sparse_dir, 'cameras.txt')
    with open(target_file, 'w') as f:
        f.write('# Camera list with one line of data per camera:\n')
        f.write('#   CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n')
        for i in range(len(rgb_files)):
            f.write(f"{i} PINHOLE {imgs_shape[1]} {imgs_shape[0]} {focal_lengths[i]} {focal_lengths[i]} {imgs_shape[1]/2} {imgs_shape[0]/2}\n")

def save_images_txt(pose_file, sparse_dir):
    images_file =  os.path.join(sparse_dir, 'images.txt')

    rgb_files = []
    rots = []
    translations = []
    focal_lengths = []
    confidences = []
    with open(pose_file, 'r') as f:
        for line in f:
            tokens = line.split()
            rgb_files.append(tokens[0])
            qw, qx, qy, qz = [float(t) for t in tokens[1:5]]
            rots.append([qw, qx, qy, qz])
            tx, ty, tz = [float(t) for t in tokens[5:8]]
            translations.append([tx, ty, tz])
            focal_length = float(tokens[8])
            confidence = float(tokens[9])
            focal_lengths.append(focal_length)
            confidences.append(confidence)

    with open(images_file, 'w') as f:
        f.write("# Image list with two lines of data per image:\n")
        f.write("# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n")
        f.write("# POINTS2D[] as (X, Y, POINT3D_ID)\n")
        for i in range(len(rgb_files)):
            name = Path(rgb_files[i]).stem
            qw, qx, qy, qz = rots[i]
            tx, ty, tz = translations[i]
            f.write(f"{i} {qw} {qx} {qy} {qz} {tx} {ty} {tz} {i} {name}.png\n\n")

def save_point_cloud(pt_file, sparse_dir):
    cloud = o3d.io.read_point_cloud(pt_file, format='xyzrgb')
    pts=np.asarray(cloud.points).reshape(-1,3)[::3]
    colors=np.asarray(cloud.colors).reshape(-1,3)[::3]
    colors = colors.astype(np.uint8)
    # clamp colors in [0,255]
    colors = np.clip(colors, 0, 255)

    save_path = os.path.join(sparse_dir, 'points3D.txt')
    header = """#3D point list with one line of data per point:
#POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)
#Number of points: 3, mean track length: 3.3334
"""
    with open(save_path, 'w') as f:
        f.write(header)
        for i, (pt, color) in enumerate(zip(pts, colors)):
            f.write(f"{i} {pt[0]} {pt[1]} {pt[2]} {int(color[0])} {int(color[1])} {int(color[2])}\n")

    # save as ply
    save_path = os.path.join(sparse_dir, 'points3D.ply')
    normals = np.tile([0, 1, 0], (pts.shape[0], 1))
    pct = trimesh.PointCloud(pts, colors=colors)
    pct.vertices_normal = normals
    default_normal = [0, 1, 0]
    vertices = pct.vertices
    colors = pct.colors
    normals = np.tile(default_normal, (vertices.shape[0], 1))
    header = """ply
format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property float nx
property float ny
property float nz
end_header
""".format(len(vertices))
    with open(save_path, 'w') as f:
        f.write(header)
        for vertex, color, normal in zip(vertices, colors, normals):
            f.write(f"{vertex[0]} {vertex[1]} {vertex[2]} {int(color[0])} {int(color[1])} {int(color[2])} {normal[0]} {normal[1]} {normal[2]}\n")


if __name__ == '__main__':
    src_dir='path_to_ace0_res'
    pose_file=os.path.join(src_dir, 'poses_final.txt')
    pt_file=os.path.join(src_dir, 'point_cloud_out.txt')

    sparse_dir=os.path.join(src_dir, 'sparse')
    if not os.path.exists(sparse_dir):
        os.makedirs(sparse_dir)

    save_cameras(pose_file, sparse_dir)
    save_images_txt(pose_file, sparse_dir)
    save_point_cloud(pt_file, sparse_dir)

The point_cloud_out.txt is the extracted point cloud from $\texttt{ACE0}$

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants