14
14
idx = range (batch_size )
15
15
16
16
17
- filter0 = np .random .standard_normal (size = [3 ,3 ,1 ,5 ])* 0.1
18
- filter = np .random .standard_normal (size = [3 ,3 ,5 ,5 ])* 0.1
19
- conv_layer0 = conv .conv2d (filter0 ,2 ,1 )
17
+ filter0 = np .random .standard_normal (size = [3 ,3 ,1 ,3 ])* 0.1
18
+ filter = np .random .standard_normal (size = [3 ,3 ,3 ,5 ])* 0.1
19
+ conv_layer0 = conv .conv2d (filter0 ,1 ,1 )
20
20
relu0 = conv .relu ()
21
+ dropout0 = conv .dropout (0.6 )
21
22
conv_layer = conv .conv2d (filter ,2 ,1 )
22
23
relu = conv .relu ()
23
24
24
- l1 = neural .layer (28 * 28 / 4 / 4 * 5 ,10 ,"sigmoid" ,weight_decay = 0.001 )
25
+ hidden = 100
26
+ l1 = neural .layer (28 * 28 / 1 / 4 * 5 ,hidden ,"linear" ,weight_decay = 0.0 )
27
+ l2 = neural .layer (hidden ,10 ,"softmax" ,weight_decay = 0.0 )
25
28
26
29
loop = size // batch_size
27
30
28
- epoch = 3
29
- learning_rate = 0.02
30
- for _ in range (epoch ):
31
- for _ in range (loop ):
31
+ epoch = 1
32
+ learning_rate = 0.0015
33
+ for k in range (epoch ):
34
+ for j in range (loop ):
32
35
images ,labels = train .next_batch (batch_size )
33
36
l = np .zeros ([batch_size ,label_num ])
34
37
l [idx ,[labels ]] = 1
37
40
label = l [i ].reshape (- 1 ,1 )
38
41
conv_out0 = conv_layer0 .forward (data )
39
42
reludata0 = relu0 .forward (conv_out0 )
40
- conv_out = conv_layer .forward (reludata0 )
43
+ dropoutdata0 = dropout0 .forward (reludata0 )
44
+ conv_out = conv_layer .forward (dropoutdata0 )
41
45
reludata = relu .forward (conv_out )
42
46
linear = reludata .reshape (- 1 ,1 )
43
47
l1_out = l1 .forward (linear )
44
- loss = neural .sigmoid_loss (l1_out ,label )
48
+ l2_out = l2 .forward (l1_out )
49
+ loss = neural .softmax_loss (l2_out ,label )
45
50
print 'loss is ' + str (loss )
46
- dloss = neural .prime_sigmoid_loss (l1_out ,label )
47
- dlinear = l1 .backward (dloss )
51
+ dloss = neural .prime_softmax_loss (l2_out ,label )
52
+ dl2_out = l2 .backward (dloss )
53
+ dlinear = l1 .backward (dl2_out )
48
54
dreluout = dlinear .reshape (reludata .shape )
49
55
dconv_out = relu .backward (dreluout )
50
56
ddata = conv_layer .backward (dconv_out )
51
- drelu0 = relu0 .backward (ddata )
57
+ ddropout0 = dropout0 .backward (ddata )
58
+ drelu0 = relu0 .backward (ddropout0 )
52
59
dconv_out0 = conv_layer0 .backward (drelu0 )
53
60
conv_layer .apply_gradients (learning_rate )
54
61
conv_layer0 .apply_gradients (learning_rate )
55
62
l1 .apply_gradients (learning_rate )
56
- learning_rate * = 0.3
57
-
63
+ if ( j ! = 0 and j % 400 == 0 ):
64
+ learning_rate *= 0.4
58
65
59
66
correct = 0
60
67
test_size = test .num_examples
61
68
for i in range (test_size ):
62
- images ,labels = test .next_batch (1 )
63
- data = images [0 ]
64
- label = labels [0 ]
65
- conv_out0 = conv_layer0 .forward (data )
66
- reludata0 = relu0 .forward (conv_out0 )
67
- conv_out = conv_layer .forward (reludata0 )
68
- reludata = relu .forward (conv_out )
69
- linear = conv_out .reshape (- 1 ,1 )
70
- l1_out = l1 .forward (linear )
71
- # l2_out = l2.forward(l1_out)
72
- n = np .argmax (l1_out ,axis = 0 )
73
- if (n [0 ] == label ):
74
- correct += 1
69
+ images ,labels = test .next_batch (1 )
70
+ data = images [0 ]
71
+ label = labels [0 ]
72
+ conv_out0 = conv_layer0 .forward (data )
73
+ reludata0 = relu0 .forward (conv_out0 )
74
+ conv_out = conv_layer .forward (reludata0 )
75
+ reludata = relu .forward (conv_out )
76
+ linear = conv_out .reshape (- 1 ,1 )
77
+ l1_out = l1 .forward (linear )
78
+ l2_out = l2 .forward (l1_out )
79
+ n = np .argmax (l2_out ,axis = 0 )
80
+ if (n [0 ] == label ):
81
+ correct += 1
75
82
print "{} correct, rate is {}" .format (correct ,correct * 1.0 / test_size )
76
83
# IPython.embed()
0 commit comments