@@ -20,42 +20,51 @@ The primary stem typically contains the instrumental part of the audio, while th
20
20
21
21
You'll need ` ffmpeg ` and ` libsndfile ` , which should be easy to install on most platforms, e.g.:
22
22
23
- - Debian/Ubuntu: ` apt-get update; apt-get install -y libsndfile1-dev ffmpeg `
24
- - macOS: ` brew update; brew install libsndfile ffmpeg `
23
+ ### 🐧 Debian/Ubuntu
24
+ ` apt-get update; apt-get install -y libsndfile1-dev ffmpeg `
25
+
26
+ ### macOS
27
+ ` brew update; brew install libsndfile ffmpeg `
25
28
26
29
You can then install Audio Separator using pip, use one of the following to install the correct onnxruntime dependency for your device:
27
30
28
- ### Nvidia GPU with CUDA acceleration:
31
+ ### 🎮 Nvidia GPU with CUDA acceleration
29
32
30
33
` pip install audio-separator[gpu] `
31
34
32
- ### Apple Silicon, macOS Sonoma+ with CoreML acceleration:
35
+ - 💬 If successfully configured, you should see this log message when running audio-separator:
36
+ ` ONNXruntime has CUDAExecutionProvider available, enabling acceleration `
37
+
38
+ ### Apple Silicon, macOS Sonoma+ with CoreML acceleration
33
39
34
40
` pip install audio-separator[silicon] `
35
41
36
- ### No hardware acceleration, CPU only:
42
+ - 💬 If successfully configured, you should see this log message when running audio-separator:
43
+ ` ONNXruntime has CoreMLExecutionProvider available, enabling acceleration `
44
+
45
+ ### 🐢 No hardware acceleration, CPU only:
37
46
38
47
` pip install audio-separator[cpu] `
39
48
40
49
41
- ### GPU / CUDA specific steps
50
+ ## GPU / CUDA specific installation steps
42
51
43
52
In theory, all you should need to do to get ` audio-separator ` working with a GPU is install it with the ` [gpu] ` extra as above.
44
53
45
- However, sometimes getting both PyTorch and ONNX Runtime working with CUDA support can be a bit tricky so sometimes it may not be that easy .
54
+ However, sometimes getting both PyTorch and ONNX Runtime working with CUDA support can be a bit tricky so it may not work that easily .
46
55
47
- You may need to reinstall them directly, allowing pip to calculate the right versions for your platform:
56
+ You may need to reinstall both packages directly, allowing pip to calculate the right versions for your platform:
48
57
49
58
- ` pip uninstall torch onnxruntime `
50
59
- ` pip cache purge `
51
- - ` pip install torch torchvision torchaudio `
52
- - ` pip install onnxruntime-gpu `
60
+ - ` pip install --force-reinstall torch torchvision torchaudio `
61
+ - ` pip install --force-reinstall onnxruntime-gpu `
53
62
54
63
Depending on your hardware, you may get better performance with the optimum version of onnxruntime:
55
- - ` pip install "optimum[onnxruntime-gpu]" `
64
+ - ` pip install --force-reinstall "optimum[onnxruntime-gpu]" `
56
65
57
66
Depending on your CUDA version and hardware, you may need to install torch from the ` cu118 ` index instead:
58
- - ` pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 `
67
+ - ` pip install --force-reinstall torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 `
59
68
60
69
> Note: if anyone knows how to make this cleaner so we can support both different platform-specific dependencies for hardware acceleration without a separate installation process for each, please let me know or raise a PR!
61
70
0 commit comments