forked from scnuhealthy/Tensorflow_PersonLab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
180 lines (151 loc) · 7.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import tensorflow as tf
from config import config
import model
import numpy as np
from data_generator import DataGeneraotr
import os
slim = tf.contrib.slim
# edit it depended on your GPU environment
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# the function to count the number of total parameters of the network
def count1():
total_parameters = 0
for variable in tf.trainable_variables():
# shape is an array of tf.Dimension
shape = variable.get_shape()
# print(shape)
# print(len(shape))
variable_parameters = 1
for dim in shape:
# print(dim)
variable_parameters *= dim.value
# print(variable_parameters)
total_parameters += variable_parameters
print(total_parameters)
def tf_repeat(tensor, repeats):
"""
From https://github.com/tensorflow/tensorflow/issues/8246
Args:
input: A Tensor. 1-D or higher.
repeats: A list. Number of repeat for each dimension, length must be the same as the number of dimensions in input
Returns:
A Tensor. Has the same type as input. Has the shape of tensor.shape * repeats
"""
with tf.variable_scope("repeat"):
expanded_tensor = tf.expand_dims(tensor, -1)
multiples = [1] + repeats
tiled_tensor = tf.tile(expanded_tensor, multiples = multiples)
repeated_tensor = tf.reshape(tiled_tensor, tf.shape(tensor) * repeats)
return repeated_tensor
def kp_map_loss(kp_maps_true,kp_maps_pred,unannotated_mask,crowd_mask):
loss = tf.keras.backend.binary_crossentropy(kp_maps_true,kp_maps_pred)
loss = loss*crowd_mask*unannotated_mask
loss = tf.reduce_mean(loss)*config.LOSS_WEIGHTS['heatmap']
return loss
def short_offset_loss(short_offset_true,short_offsets_pred,kp_maps_true):
loss = tf.abs(short_offset_true-short_offsets_pred)/config.KP_RADIUS
loss = loss*tf_repeat(kp_maps_true,[1,1,1,2])
loss = tf.reduce_sum(loss) / (tf.reduce_sum(kp_maps_true)+1)
return loss*config.LOSS_WEIGHTS['short']
def mid_offset_loss(mid_offset_true,mid_offset_pred,kp_maps_true):
loss = tf.abs(mid_offset_pred-mid_offset_true)/config.KP_RADIUS
recorded_maps = []
for mid_idx, edge in enumerate(config.EDGES + [edge[::-1] for edge in config.EDGES]):
from_kp = edge[0]
recorded_maps.extend([kp_maps_true[:,:,:,from_kp], kp_maps_true[:,:,:,from_kp]])
recorded_maps = tf.stack(recorded_maps,axis=-1)
# print(recorded_maps)
loss = loss*recorded_maps
loss = tf.reduce_sum(loss)/(tf.reduce_sum(recorded_maps)+1)
return loss*config.LOSS_WEIGHTS['mid']
def long_offset_loss(long_offset_true,long_offsets_pred,seg_true,crowd_mask,unannotated_mask,overlap_mask):
loss = tf.abs(long_offsets_pred-long_offset_true)/config.KP_RADIUS
instances = seg_true*crowd_mask*unannotated_mask*overlap_mask
loss = loss*instances
loss = tf.reduce_sum(loss)/(tf.reduce_sum(instances)+1)
return loss*config.LOSS_WEIGHTS['long']
def segmentation_loss(seg_true,seg_pred,crowd_mask):
loss = tf.keras.backend.binary_crossentropy(seg_true,seg_pred)
loss = loss*crowd_mask
return tf.reduce_mean(loss)*config.LOSS_WEIGHTS['seg']
def get_losses(ground_truth,outputs):
kp_maps_true, short_offset_true, mid_offset_true, long_offset_true, seg_true, crowd_mask, unannotated_mask, overlap_mask = ground_truth
kp_maps, short_offsets, mid_offsets, long_offsets, seg_mask = outputs
losses = []
losses.append(kp_map_loss(kp_maps_true,kp_maps,unannotated_mask,crowd_mask))
losses.append(short_offset_loss(short_offset_true,short_offsets,kp_maps_true))
losses.append(mid_offset_loss(mid_offset_true,mid_offsets,kp_maps_true))
losses.append(long_offset_loss(long_offset_true, long_offsets,seg_true,crowd_mask,unannotated_mask,overlap_mask))
losses.append(segmentation_loss(seg_true,seg_mask,crowd_mask))
return losses
def train(load_pretrained_model=True,checkpoint_path=None):
# build the placeholder
batch_size,height,width=config.BATCH_SIZE,config.IMAGE_SHAPE[0],config.IMAGE_SHAPE[1]
img = tf.placeholder(tf.float32,shape=[batch_size,height,width,3])
kp_maps_true = tf.placeholder(tf.float32,shape=[batch_size,height,width,config.NUM_KP])
short_offsets_true = tf.placeholder(tf.float32,shape=[batch_size,height,width,2*config.NUM_KP])
mid_offsets_true = tf.placeholder(tf.float32,shape=[batch_size,height,width,4*config.NUM_EDGES])
long_offsets_true = tf.placeholder(tf.float32,shape=[batch_size,height,width,2*config.NUM_KP])
seg_mask_true = tf.placeholder(tf.float32,shape=[batch_size,height,width,1])
crowd_mask = tf.placeholder(tf.float32,shape=[batch_size,height,width,1])
unannotated_mask = tf.placeholder(tf.float32,shape=[batch_size,height,width,1])
overlap_mask = tf.placeholder(tf.float32,shape=[batch_size,height,width,1])
# forward propagation
outputs = model.model(img)
ground_truth = [kp_maps_true, short_offsets_true, mid_offsets_true, long_offsets_true, seg_mask_true, crowd_mask, unannotated_mask, overlap_mask]
loss = get_losses(ground_truth,outputs)
print("[*]\tModel Build Finished!")
print(count1())
# the ResNet parameters
exclusions = ['resnet_v2_101/logits']
param_except_logits = slim.get_variables_to_restore(include=['resnet_v2_101'],exclude=exclusions)
# back propagation
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(config.LEARNING_RATE)
train_step = optimizer.minimize(sum(loss)/batch_size)
# initializer
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
# load pretrained model
if load_pretrained_model:
init_fn = slim.assign_from_checkpoint_fn(config.PRETRAINED_MODEL_PATH,param_except_logits)
init_fn(sess)
print("[*]\tPretrained Model Restored!")
# saver and load checkpoint
global_vars = tf.global_variables()
saver = tf.train.Saver(var_list = global_vars)
if checkpoint_path!=None:
saver.restore(sess,checkpoint_path)
print("[*]\tSESS Restored!")
dataset = DataGeneraotr()
print("[*]\tDataset Build Finished!")
summ_scalar_list = []
summ_scalar_list.append(tf.summary.scalar("kp_map_loss", loss[0]))
summ_scalar_list.append(tf.summary.scalar("short_offsets_loss", loss[1]))
summ_scalar_list.append(tf.summary.scalar("mid_offsets_loss", loss[2]))
summ_scalar_list.append(tf.summary.scalar("long_offsets_loss", loss[3]))
summ_scalar_list.append(tf.summary.scalar("seg_loss", loss[4]))
summ_scalar_list.append(tf.summary.scalar("total_loss", sum(loss)))
summ_scalar = tf.summary.merge(summ_scalar_list)
# start training
print("[*]\tTraining Started!")
writer = tf.summary.FileWriter(config.LOG_DIR)
for n in range(config.NUM_EPOCHS):
for m in range(config.NUM_EPOCHS_SIZE):
batch = next(dataset.gen_batch(batch_size=batch_size))
print("[*]\tOne Batch Generated!")
feed_dict = {img:batch[0],kp_maps_true:batch[1],short_offsets_true:batch[2],mid_offsets_true:batch[3],long_offsets_true:batch[4],
seg_mask_true:batch[5],crowd_mask:batch[6],unannotated_mask:batch[7],overlap_mask:batch[8]}
_,train_loss = sess.run([train_step,loss],feed_dict=feed_dict)
iters = n*config.NUM_EPOCHS_SIZE+m
# record and output the loss
if iters%10==0:
writer.add_summary(sess.run(summ_scalar,feed_dict=feed_dict),
iters)
print('[*]\titers:'+str(iters)+',loss:',train_loss)
print('[*]\titers:'+str(iters)+',total loss:',sum(train_loss))
# save model
saver.save(sess,os.path.join(config.SAVE_MODEL_PATH,'model.ckpt'),n)
checkpoint_path = './model/personlab/my_model.ckpt'
train()