-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
332 lines (278 loc) · 16.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from keras.applications.vgg19 import VGG19
import keras.backend as K
from keras.layers import Dense, Add, Input, ReLU, AveragePooling2D, GlobalAveragePooling1D, Dot, Concatenate, Lambda, UpSampling2D, Reshape, ZeroPadding2D, Cropping2D
from keras.layers.core import Activation
from keras.models import Model
from keras.optimizers import Adam
from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
from keras_vggface.vggface import VGGFace
import tensorflow as tf
from utils import GlobalSumPooling2D, ConvSN2D, DenseSN, AdaInstanceNormalization, Bias, SelfAttention
class GAN:
def __init__(self, input_shape, num_videos, k):
"""
input_shape: (H, W, 3)
k: The number of image pairs into embedder
"""
self.h, self.w, self.c = self.input_shape = input_shape
self.num_videos = num_videos
self.k = k
def downsample(self, x, channels, i_norm=False, fm=None):
""" Downsampling is similar to an implementation in BigGAN """
shortcut = x
x = ReLU(name=fm)(x)
x = ConvSN2D(channels, (3,3), strides=(1, 1), padding='same',)(x)
if i_norm:
x = InstanceNormalization(axis=-1)(x) # use in generator
x = ReLU()(x)
x = ConvSN2D(channels, (3,3), strides=(1, 1), padding='same', kernel_initializer = 'he_normal')(x)
if i_norm:
x = InstanceNormalization(axis=-1)(x) # use in generator
x = AveragePooling2D(pool_size=(2, 2))(x)
shortcut = ConvSN2D(channels, (1, 1), padding='same', kernel_initializer = 'he_normal')(shortcut)
shortcut = AveragePooling2D(pool_size=(2, 2))(shortcut)
x = Add()([x, shortcut])
return x
def resblock(self, x, channels, mean0, std0, mean1, std1):
""" channels doesn't change """
shortcut = x
x = ConvSN2D(channels, (3, 3), padding='same', kernel_initializer='he_normal')(x)
x = AdaInstanceNormalization()([x, mean0, std0])
x = ReLU()(x)
x = ConvSN2D(channels, (3, 3), padding='same', kernel_initializer='he_normal')(x)
x = AdaInstanceNormalization()([x, mean1, std1])
x = Add()([x, shortcut])
return x
def resblock_d(self, x, channels, fm=None):
""" channels doesn't change """
shortcut = x
x = ReLU(name=fm)(x) # Add preactivation ReLU to get feature matching activation layer
x = ConvSN2D(channels, (3, 3), padding='same', kernel_initializer='he_normal')(x)
x = ReLU()(x)
x = ConvSN2D(channels, (3, 3), padding='same', kernel_initializer='he_normal')(x)
x = Add()([x, shortcut])
return x
def upsample(self, x, channels, mean0, std0, mean1, std1):
shortcut = x
x = AdaInstanceNormalization()([x, mean0, std0])
x = ReLU()(x)
x = UpSampling2D(size=(2, 2))(x)
x = ConvSN2D(channels, (3, 3), padding='same', kernel_initializer='he_normal')(x)
x = AdaInstanceNormalization()([x, mean1, std1])
x = ReLU()(x)
x = ConvSN2D(channels, (3, 3), padding='same', kernel_initializer='he_normal')(x)
shortcut = UpSampling2D(size=(2, 2))(shortcut)
shortcut = ConvSN2D(channels, (1, 1), kernel_initializer='he_normal')(shortcut)
x = Add()([x, shortcut])
return x
def build_embedder(self, name='embedder'):
h, w, c = self.input_shape
input_landmark_frame = Input(shape=(h, w, c * 2)) # [:,:,:3]: landmark; [:,:,3:]: frame
hid = self.downsample(input_landmark_frame, 64)
hid = self.downsample(hid, 128)
hid = self.downsample(hid, 256)
hid = SelfAttention(256)(hid)
hid = self.downsample(hid, 512)
hid = self.downsample(hid, 512)
hid = self.downsample(hid, 512)
hid = ReLU()(hid)
embedding = GlobalSumPooling2D()(hid)
embedder = Model(inputs=input_landmark_frame, outputs=embedding, name=name)
return embedder
def build_generator(self):
landmarks = Input(shape=self.input_shape, name='landmarks')
style_embedding = Input(shape=(512,), name='style_embedding')
adain_param_length = 512*22+256*4+128*4+64*2+6
adain_params = DenseSN(adain_param_length)(style_embedding)
adain_params = Reshape((1, 1, adain_param_length))(adain_params)
# Slice AdaIN Parameters
mean_b00 = Lambda(lambda x: x[:,:,:, 0 :512])(adain_params)
std_b00 = Lambda(lambda x: x[:,:,:, 512 :512*2])(adain_params)
mean_b01 = Lambda(lambda x: x[:,:,:, 512*2:512*3])(adain_params)
std_b01 = Lambda(lambda x: x[:,:,:, 512*3:512*4])(adain_params)
mean_b10 = Lambda(lambda x: x[:,:,:, 512*4:512*5])(adain_params)
std_b10 = Lambda(lambda x: x[:,:,:, 512*5:512*6])(adain_params)
mean_b11 = Lambda(lambda x: x[:,:,:, 512*6:512*7])(adain_params)
std_b11 = Lambda(lambda x: x[:,:,:, 512*7:512*8])(adain_params)
mean_b20 = Lambda(lambda x: x[:,:,:, 512*8:512*9])(adain_params)
std_b20 = Lambda(lambda x: x[:,:,:, 512*9:512*10])(adain_params)
mean_b21 = Lambda(lambda x: x[:,:,:, 512*10:512*11])(adain_params)
std_b21 = Lambda(lambda x: x[:,:,:, 512*11:512*12])(adain_params)
mean_b30 = Lambda(lambda x: x[:,:,:, 512*12:512*13])(adain_params)
std_b30 = Lambda(lambda x: x[:,:,:, 512*13:512*14])(adain_params)
mean_b31 = Lambda(lambda x: x[:,:,:, 512*14:512*15])(adain_params)
std_b31 = Lambda(lambda x: x[:,:,:, 512*15:512*16])(adain_params)
mean_u00 = Lambda(lambda x: x[:,:,:, 512*16:512*17])(adain_params)
std_u00 = Lambda(lambda x: x[:,:,:, 512*17:512*18])(adain_params)
mean_u01 = Lambda(lambda x: x[:,:,:, 512*18:512*19])(adain_params)
std_u01 = Lambda(lambda x: x[:,:,:, 512*19:512*20])(adain_params)
mean_u10 = Lambda(lambda x: x[:,:,:, 512*20 :512*21])(adain_params)
std_u10 = Lambda(lambda x: x[:,:,:, 512*21 :512*22])(adain_params)
mean_u11 = Lambda(lambda x: x[:,:,:, 512*22 :512*22+256])(adain_params)
std_u11 = Lambda(lambda x: x[:,:,:, 512*22+256:512*22+256*2])(adain_params)
mean_u20 = Lambda(lambda x: x[:,:,:, 512*22+256*2 :512*22+256*3])(adain_params)
std_u20 = Lambda(lambda x: x[:,:,:, 512*22+256*3 :512*22+256*4])(adain_params)
mean_u21 = Lambda(lambda x: x[:,:,:, 512*22+256*4 :512*22+256*4+128])(adain_params)
std_u21 = Lambda(lambda x: x[:,:,:, 512*22+256*4+128:512*22+256*4+128*2])(adain_params)
mean_u30 = Lambda(lambda x: x[:,:,:, 512*22+256*4+128*2 :512*22+256*4+128*3])(adain_params)
std_u30 = Lambda(lambda x: x[:,:,:, 512*22+256*4+128*3 :512*22+256*4+128*4])(adain_params)
mean_u31 = Lambda(lambda x: x[:,:,:, 512*22+256*4+128*4 :512*22+256*4+128*4+64])(adain_params)
std_u31 = Lambda(lambda x: x[:,:,:, 512*22+256*4+128*4+64:512*22+256*4+128*4+64*2])(adain_params)
mean_u4 = Lambda(lambda x: x[:,:,:, 512*22+256*4+128*4+64*2 :512*22+256*4+128*4+64*2+3])(adain_params)
std_u4 = Lambda(lambda x: x[:,:,:, 512*22+256*4+128*4+64*2+3:512*22+256*4+128*4+64*2+6])(adain_params)
# Main forward
hid = self.downsample(landmarks, 64, i_norm=True)
hid = self.downsample(hid, 128, i_norm=True)
hid = self.downsample(hid, 256, i_norm=True)
hid = SelfAttention(256)(hid)
hid = self.downsample(hid, 512, i_norm=True)
hid = self.resblock(hid, 512, mean_b00, std_b00, mean_b01, std_b01)
hid = self.resblock(hid, 512, mean_b10, std_b10, mean_b11, std_b11)
hid = self.resblock(hid, 512, mean_b20, std_b20, mean_b21, std_b21)
hid = self.resblock(hid, 512, mean_b30, std_b30, mean_b31, std_b31)
hid = self.upsample(hid, 512, mean_u00, std_u00, mean_u01, std_u01)
hid = self.upsample(hid, 256, mean_u10, std_u10, mean_u11, std_u11)
hid = SelfAttention(256)(hid)
hid = self.upsample(hid, 128, mean_u20, std_u20, mean_u21, std_u21)
hid = self.upsample(hid, 64, mean_u30, std_u30, mean_u31, std_u31)
hid = ConvSN2D(3, (1, 1), padding='same', kernel_initializer='he_normal')(hid)
hid = ReLU()(hid)
hid = AdaInstanceNormalization()([hid, mean_u4, std_u4])
fake_frame = Activation('tanh', name='fake_frame')(hid)
generator = Model(
inputs=[landmarks, style_embedding],
outputs=[fake_frame],
name='generator')
return generator
def build_discriminator(self, meta):
"""
realicity = dot(v, w)
w = Pc+w_0 (P: Projection Matrix; c: one-hot condition)
"""
input_frame = Input(shape=self.input_shape, name='frames')
input_landmark = Input(shape=self.input_shape, name='landmarks')
inputs = Concatenate()([input_frame, input_landmark])
hid = self.downsample(inputs, 64)
hid = self.downsample(hid, 128, fm='fm6')
hid = self.downsample(hid, 256, fm='fm5')
hid = SelfAttention(256)(hid)
hid = self.downsample(hid, 512, fm='fm4')
hid = self.downsample(hid, 512, fm='fm3')
hid = self.downsample(hid, 512, fm='fm2')
hid = self.resblock_d(hid, 512, fm='fm1')
hid = ReLU(name='fm0')(hid)
v = GlobalSumPooling2D()(hid)
if meta:
condition = Input(shape=(self.num_videos,), name='condition')
W_i = Dense(512, use_bias=False, name='W_i')(condition) # Projection Matrix, P
else:
W_i = Input(shape=(512,), name='e_NEW')
w = Bias(name='w')(W_i) # w = W_i + w_0
innerproduct = Dot(axes=-1)([v, w])
realicity = Bias(name='realicity')(innerproduct)
if meta:
inputs = [input_frame, input_landmark, condition]
else:
inputs = [input_frame, input_landmark, W_i]
discriminator = Model(
inputs=inputs,
outputs=[realicity],
name='discriminator'
)
return discriminator
def _build_embedding_discriminator_model(self, discriminator):
self.embedding_discriminator = Model(discriminator.get_layer('condition').input, discriminator.get_layer('W_i').output, name='embedding_discriminator')
return self.embedding_discriminator
def _build_intermediate_discriminator_model(self, discriminator):
layer_names = ['fm{}'.format(i) for i in range(0, 7)]
fm_outputs = [discriminator.get_layer(layer_name).output for layer_name in layer_names]
self.intermediate_discriminator = Model(discriminator.input[:2], fm_outputs, name='intermediate_discriminator')
return self.intermediate_discriminator
def compile_models(self, meta, gpus=1):
# Compile discriminator
discriminator = self.build_discriminator(meta)
discriminator.trainable = True
if gpus > 1:
parallel_discriminator = multi_gpu_model(discriminator, gpus=4)
parallel_discriminator.compile(loss='hinge', optimizer=Adam(lr=2e-4, beta_1=1e-5))
else:
discriminator.compile(loss='hinge', optimizer=Adam(lr=2e-4, beta_1=1e-5))
# Compile Combined model to train generator
embedder = self.build_embedder()
generator = self.build_generator()
intermediate_discriminator = self._build_intermediate_discriminator_model(discriminator)
intermediate_vgg19 = self.build_intermediate_vgg19_model()
intermediate_vggface = self.build_intermediate_vggface_model()
discriminator.trainable = False
intermediate_discriminator.trainable = False
intermediate_vgg19.trainable = False
intermediate_vggface.trainable = False
input_lndmk = Input(shape=self.input_shape, name='landmarks')
condition = Input(shape=(self.num_videos,), name='condition')
inputs_embedder = [Input((self.h, self.w, self.c * 2), name='style{}'.format(i)) for i in range(self.k)] # (BATCH_SIZE, H, W, 6)
embeddings = [embedder(em_input) for em_input in inputs_embedder] # (BATCH_SIZE, 512)
if self.k > 1:
embeddings_expand = [Lambda(lambda x: K.expand_dims(x, axis=1))(embedding) for embedding in embeddings] # (BATCH_SIZE, 1, 512)
embedding_k = Concatenate(axis=1)(embeddings_expand) # (BATCH_SIZE, K, 512)
average_embedding = GlobalAveragePooling1D()(embedding_k) # (BATCH_SIZE, 512)
else:
average_embedding = embeddings[0]
fake_frame = generator([input_lndmk, average_embedding])
intermediate_vgg19_fakes = intermediate_vgg19(fake_frame)
intermediate_vggface_fakes = intermediate_vggface(fake_frame)
intermediate_discriminator_fakes = intermediate_discriminator([fake_frame, input_lndmk])
if meta:
self._build_embedding_discriminator_model(discriminator) # Call embedding discriminator when meta learning
realicity = discriminator([fake_frame, input_lndmk, condition])
combined = Model(
inputs = [input_lndmk] + inputs_embedder + [condition],
outputs = intermediate_vgg19_fakes + intermediate_vggface_fakes + [realicity] + intermediate_discriminator_fakes + embeddings,
name = 'combined'
)
loss = ['mae'] * len(intermediate_vgg19_fakes) + ['mae'] * len(intermediate_vggface_fakes) + ['hinge'] + ['mae'] * len(intermediate_discriminator_fakes) + ['mae'] * self.k
loss_weights = [1.5e-1] * len(intermediate_vgg19_fakes) + [2.5e-2] * len(intermediate_vggface_fakes) + [1] + [10] * len(intermediate_discriminator_fakes) + [10] * self.k
else:
embedder.trainable = False
realicity = discriminator([fake_frame, input_lndmk, average_embedding])
combined = Model(
inputs = [input_lndmk] + inputs_embedder,
outputs = intermediate_vgg19_fakes + intermediate_vggface_fakes + [realicity] + intermediate_discriminator_fakes,
name = 'combined'
)
loss = ['mae'] * len(intermediate_vgg19_fakes) + ['mae'] * len(intermediate_vggface_fakes) + ['hinge'] + ['mae'] * len(intermediate_discriminator_fakes)
loss_weights = [1.5e-1] * len(intermediate_vgg19_fakes) + [2.5e-2] * len(intermediate_vggface_fakes) + [1] + [10] * len(intermediate_discriminator_fakes)
self.embedder = embedder
self.generator = generator
self.combined = combined
self.discriminator = discriminator
if gpus > 1:
parallel_combined = multi_gpu_model(combined, gpus=gpus)
parallel_combined.compile(
loss=loss,
loss_weights=loss_weights,
optimizer=Adam(lr=5e-5, beta_1=1e-5)
)
self.parallel_combined = parallel_combined
self.parallel_discriminator = parallel_discriminator
return parallel_combined, parallel_discriminator, combined, discriminator
combined.compile(
loss=loss,
loss_weights=loss_weights,
optimizer=Adam(lr=5e-5, beta_1=1e-5)
)
return combined, combined, discriminator, discriminator
def build_intermediate_vgg19_model(self):
vgg19 = VGG19(input_shape=self.input_shape, weights='imagenet', include_top=False)
vgg19.trainable = False
# Paper says Conv1, 6, 11, 20, 29 VGG19 layers but it isn't clear which layer is which layer
layer_names = ['block1_conv2', 'block2_conv2', 'block3_conv4', 'block4_conv4', 'block5_conv4']
intermediate_outputs = [vgg19.get_layer(layer_name).output for layer_name in layer_names]
self.intermediate_vgg19 = Model(vgg19.input, intermediate_outputs, name='intermediate_vgg19')
return self.intermediate_vgg19
def build_intermediate_vggface_model(self):
vggface = VGGFace(input_shape=self.input_shape, weights='vggface', include_top=False)
vggface.trainable = False
layer_names = ['conv1_2', 'conv2_2', 'conv3_3', 'conv4_3', 'conv5_3']
intermediate_outputs = [vggface.get_layer(layer_name).output for layer_name in layer_names]
self.intermediate_vggface = Model(vggface.input, intermediate_outputs, name='intermediate_vggface')
return self.intermediate_vggface