-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBSTree.hs
49 lines (42 loc) · 1.38 KB
/
BSTree.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
data Ord a => BSTree a = Emp | Node (BSTree a) a (BSTree a)
deriving Show
contains :: Ord a => a -> BSTree a -> Bool
contains x Emp = False
--contains x (Node yl y yr) = if (x == y) then True else if (x < y) then (contains x yl) else (contains x yr)
contains x (Node yl y yr) = f (compare x y)
where
f EQ = True
f LT = contains x yl
f GT = contains x yr
insert :: Ord a => a -> BSTree a -> BSTree a
insert x Emp = Node Emp x Emp
insert x (Node yl y yr) = f (compare x y)
where
f EQ = Node yl x yr
f LT = Node (insert x yl) y yr
f GT = Node yl y (insert x yr)
complete :: Ord a => a -> Int -> BSTree a
complete _ 0 = Emp
complete x n = Node child x child
where
child = complete x (n-1)
complete2 :: Ord a => a -> Int -> BSTree a
complete2 _ 0 = Emp
complete2 x n = fst $ create2 x n
where
create2 :: Ord a => a -> Int -> (BSTree a, BSTree a)
create2 x 0 = (Emp , Node Emp x Emp)
create2 x n = f (mod (n - 1) 2)
where
f 0 = ((Node sub_0 x sub_0) , (Node sub_1 x sub_0))
f 1 = ((Node sub_1 x sub_0) , (Node sub_1 x sub_1))
(sub_0, sub_1) = create2 x (div (n-1) 2)
size :: Ord a => BSTree a -> Int
size Emp = 0
size (Node xl x xr) = (size xl) + (size xr) + 1
balance :: Ord a => BSTree a -> Bool
balance Emp = True
balance (Node xl x xr) = nearlySize && balance xr && balance xl
where
nearlySize = ((-1 <= diff) && (diff <= 1))
diff = (size xl) - (size xr)