-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathfinetune_dolly.py
93 lines (74 loc) · 3.09 KB
/
finetune_dolly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import sys
import torch
import logging
from llama2_loader import load_frozen
from plot_lora import log_lora
from datasets import load_dataset
from utils import Tokenizer, greedy_gen
# training settings
seed = 54321
iters = 1000
device = 'mps' # mps for macbooks
seq_len = 1024
batch_size = 4
lr = 1e-4
# type used for computation. Might be different from storage type (which is bfloat16)
compute_dtype = torch.float32 # float32 for macbooks
#compute_dtype = torch.bfloat16 # bfloat16 for CUDA
eval_before_training = False
eval_period = 20
gen_tokens = 32
log_lora_grad = False
log_lora_weight = True
model_path = '../llama7b'
snapshots_path = 'out'
finetune_dataset = 'databricks/databricks-dolly-15k'
prompt = 'slowllama is a '
if not os.path.exists(snapshots_path):
os.makedirs(snapshots_path)
tokenizer_path = os.path.join(model_path, 'tokenizer.model')
tokenizer = Tokenizer(tokenizer_path)
def format_sample(sample):
instruction = f"### Instruction\n{sample['instruction']}\n\n"
context = f"### Context\n{sample['context']}\n\n" if len(sample["context"]) > 0 else ""
response = f"### Answer\n{sample['response']}"
return instruction + context + response
def prepare_data():
train_data = load_dataset(finetune_dataset, split="train")
formatted = [format_sample(s) for s in train_data]
return '\n\n'.join(formatted[:100])
if __name__ == '__main__':
text = prepare_data()
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO, filename='logs/finetune.log')
torch.random.manual_seed(seed)
tokens = tokenizer.encode(text, True, True)
logging.info(f'loaded dataset: {len(tokens)} tokens')
model = load_frozen(model_path, compute_dtype=compute_dtype).to(device).to(compute_dtype)
def get_batch(batch_size):
index = torch.randint(len(tokens) - seq_len, (batch_size,))
x = torch.stack([torch.tensor(tokens[i:i + seq_len]).to(torch.int64) for i in index])
y = torch.stack([torch.tensor(tokens[i + 1:i + seq_len + 1]).to(torch.int64) for i in index])
return x.to(device), y.to(device)
opt = torch.optim.AdamW(model.parameters(), lr=lr)
last_loss = None
for i in range(iters):
if i % eval_period == 0 and (i > 0 or eval_before_training):
greedy_gen(model, tokenizer, device, prompt, gen_tokens)
logging.info(f'starting iteration {i}')
X, y = get_batch(batch_size)
opt.zero_grad()
# both forward and backward passes are here.
# returned loss is a scalar, not variable
logits, loss = model.manual_loop(X, y)
opt.step()
# optional logging of lora weights/gradients
if log_lora_grad or log_lora_weight:
log_lora(model.lora_layers, log_weights=log_lora_weight, log_grad=log_lora_grad)
logging.info(f'backprop done, loss after forward pass = {loss}')
if last_loss is None:
last_loss = loss
elif loss < last_loss:
last_loss = loss
logging.info(f'saving snapshot')
torch.save(model.state_dict(), os.path.join(snapshots_path, f'state_dict_{i}.pth'))