Skip to content

Latest commit

 

History

History
121 lines (100 loc) · 4.41 KB

README.md

File metadata and controls

121 lines (100 loc) · 4.41 KB

Fast R-CNN

Fast R-CNN

Abstract

This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection. Fast R-CNN builds on previous work to efficiently classify object proposals using deep convolutional networks. Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy. Fast R-CNN trains the very deep VGG16 network 9x faster than R-CNN, is 213x faster at test-time, and achieves a higher mAP on PASCAL VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3x faster, tests 10x faster, and is more accurate.

Introduction

Before training the Fast R-CNN, users should first train an RPN, and use the RPN to extract the region proposals. The region proposals can be obtained by setting DumpProposals pseudo metric. The dumped results is a dict(file_name: pred_instance). The pred_instance is an InstanceData containing the sorted boxes and scores predicted by RPN. We provide example of dumping proposals in RPN config.

  • First, it should be obtained the region proposals in both training and validation (or testing) set. change the type of test_evaluator to DumpProposals in the RPN config to get the region proposals as below:

    The config of get training image region proposals can be set as below:

    # For training set
    val_dataloader = dict(
        dataset=dict(
            ann_file='data/coco/annotations/instances_train2017.json',
            data_prefix=dict(img='val2017/')))
    val_dataloader = dict(
        _delete_=True,
        type='DumpProposals',
        output_dir='data/coco/proposals/',
        proposals_file='rpn_r50_fpn_1x_train2017.pkl')
    test_dataloader = val_dataloader
    test_evaluator = val_dataloader

    The config of get validation image region proposals can be set as below:

    # For validation set
    val_dataloader = dict(
      _delete_=True,
      type='DumpProposals',
      output_dir='data/coco/proposals/',
      proposals_file='rpn_r50_fpn_1x_val2017.pkl')
    test_evaluator = val_dataloader

    Extract the region proposals command can be set as below:

    ./tools/dist_test.sh \
        configs/rpn_r50_fpn_1x_coco.py \
        checkpoints/rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth \
        8

    Users can refer to test tutorial for more details.

  • Then, modify the path of proposal_file in the dataset and using ProposalBroadcaster to process both ground truth bounding boxes and region proposals in pipelines. An example of Fast R-CNN important setting can be seen as below:

    train_pipeline = [
        dict(
            type='LoadImageFromFile',
            backend_args={{_base_.backend_args}}),
        dict(type='LoadProposals', num_max_proposals=2000),
        dict(type='LoadAnnotations', with_bbox=True),
        dict(
            type='ProposalBroadcaster',
            transforms=[
                dict(type='Resize', scale=(1333, 800), keep_ratio=True),
                dict(type='RandomFlip', prob=0.5),
            ]),
        dict(type='PackDetInputs')
    ]
    test_pipeline = [
        dict(
            type='LoadImageFromFile',
            backend_args={{_base_.backend_args}}),
        dict(type='LoadProposals', num_max_proposals=None),
        dict(
            type='ProposalBroadcaster',
            transforms=[
                dict(type='Resize', scale=(1333, 800), keep_ratio=True),
            ]),
        dict(
            type='PackDetInputs',
            meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                       'scale_factor'))
    ]
    train_dataloader = dict(
        dataset=dict(
            proposal_file='proposals/rpn_r50_fpn_1x_train2017.pkl',
            pipeline=train_pipeline))
    val_dataloader = dict(
        dataset=dict(
            proposal_file='proposals/rpn_r50_fpn_1x_val2017.pkl',
            pipeline=test_pipeline))
    test_dataloader = val_dataloader
  • Finally, users can start training the Fast R-CNN.

Results and Models

Citation

@inproceedings{girshick2015fast,
  title={Fast r-cnn},
  author={Girshick, Ross},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  year={2015}
}