-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py
90 lines (86 loc) · 2.52 KB
/
glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
_base_ = [
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
lang_model_name = 'bert-base-uncased'
model = dict(
type='GLIP',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[103.53, 116.28, 123.675],
std=[57.375, 57.12, 58.395],
bgr_to_rgb=False,
pad_size_divisor=32),
backbone=dict(
type='SwinTransformer',
embed_dims=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
patch_norm=True,
out_indices=(1, 2, 3),
with_cp=False,
convert_weights=False),
neck=dict(
type='FPN',
in_channels=[192, 384, 768],
out_channels=256,
start_level=0,
relu_before_extra_convs=True,
add_extra_convs='on_output',
num_outs=5),
bbox_head=dict(
type='ATSSVLFusionHead',
lang_model_name=lang_model_name,
num_classes=80,
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128],
center_offset=0.5),
bbox_coder=dict(
type='DeltaXYWHBBoxCoderForGLIP',
target_means=[.0, .0, .0, .0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
),
language_model=dict(type='BertModel', name=lang_model_name),
train_cfg=dict(
assigner=dict(type='ATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))
test_pipeline = [
dict(
type='LoadImageFromFile',
backend_args=_base_.backend_args,
imdecode_backend='pillow'),
dict(
type='FixScaleResize',
scale=(800, 1333),
keep_ratio=True,
backend='pillow'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'text', 'custom_entities'))
]
val_dataloader = dict(
dataset=dict(pipeline=test_pipeline, return_classes=True))
test_dataloader = val_dataloader