Skip to content

Commit 84f115c

Browse files
ZwwWaynehhaAndroid
andauthored
update README (#62)
* update README * update * update Co-authored-by: huanghaian <[email protected]>
1 parent 2aad4fd commit 84f115c

File tree

4 files changed

+27
-29
lines changed

4 files changed

+27
-29
lines changed

README.md

+13-14
Original file line numberDiff line numberDiff line change
@@ -42,8 +42,7 @@ English | [简体中文](README_zh-CN.md)
4242

4343
## Introduction
4444

45-
MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch. It is
46-
a part of the [OpenMMLab](https://openmmlab.com/) project.
45+
MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and [MMDetection](https://github.com/open-mmlab/mmdetection). It is a part of the [OpenMMLab](https://openmmlab.com/) project.
4746

4847
The master branch works with **PyTorch 1.6+**.
4948

@@ -53,20 +52,20 @@ The master branch works with **PyTorch 1.6+**.
5352
<details open>
5453
<summary>Major features</summary>
5554

56-
- **Fair and convenient algorithm evaluation**
55+
- **Unified and convenient benchmark**
5756

58-
MMYOLO unifies the modules of various YOLO algorithms and provides a unified benchmark process. Users can compare and analyze in a fair and convenient way.
57+
MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way.
5958

60-
- **Detailed introductory and advanced documentation**
59+
- **Rich and detailed documentation**
6160

62-
MMYOLO provides a series of documents from getting started, to model deployment, advanced guidelines, and algorithm analysis, making it easy for different users to get started and make extensions quickly.
61+
MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly.
6362

6463
- **Modular Design**
6564

66-
MMYOLO decompose the framework into different components and users can easily construct a customized model by combining different modules and training and testing strategies.
65+
MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies.
6766

6867
<img src="https://user-images.githubusercontent.com/27466624/190986949-01414a91-baae-4228-8828-c59db58dcf36.jpg" alt="BaseModule"/>
69-
The picture is provided by RangeKing@GitHub, thank you very much!
68+
The figure is contributed by RangeKing@GitHub, thank you very much!
7069

7170
</details>
7271

@@ -75,9 +74,9 @@ The master branch works with **PyTorch 1.6+**.
7574
**v0.1.0** was released on 21/9/2022:
7675

7776
- Unified component interfaces based on [OpenMMLab 2.0](https://github.com/open-mmlab) and [MMDetection 3.0](https://github.com/open-mmlab/mmdetection/tree/3.x)
78-
- Support for YOLOv5/YOLOX training and deployment, support for YOLOv6 inference and deployment
79-
- Refactored YOLOX for MMDetection to provide faster training and inference
80-
- Detailed introductory and advanced tutorials are provided, see the [English tutorial](https://mmyolo.readthedocs.io/en/latest)
77+
- Support YOLOv5/YOLOX training, support YOLOv6 inference. Deployment will be supported soon.
78+
- Refactored YOLOX from MMDetection to accelerate training and inference.
79+
- Detailed introduction and advanced tutorials are provided, see the [English tutorial](https://mmyolo.readthedocs.io/en/latest).
8180

8281
For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).
8382

@@ -101,11 +100,11 @@ mim install -e .
101100

102101
## Tutorial
103102

104-
MMYOLO is based on the MMDetection and uses the same code organization and design approach. To get better use of this, please read [MMDetection Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the first understanding of MMDetection.
103+
MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read [MMDetection Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the first understanding of MMDetection.
105104

106-
MMYOLO usage is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about [MMDetection User Guide and Advanced Guide](https://mmdetection.readthedocs.io/en/3.x/).
105+
The usage of MMYOLO is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about [MMDetection User Guide and Advanced Guide](https://mmdetection.readthedocs.io/en/3.x/).
107106

108-
For different sections than MMDetection, we have also prepared user guides and advanced guides, please read our [documentation](https://mmyolo.readthedocs.io/zenh_CN/latest/).
107+
For different parts from MMDetection, we have also prepared user guides and advanced guides, please read our [documentation](https://mmyolo.readthedocs.io/zenh_CN/latest/).
109108

110109
- User Guides
111110

README_zh-CN.md

+8-9
Original file line numberDiff line numberDiff line change
@@ -42,20 +42,19 @@
4242

4343
## 简介
4444

45-
MMYOLO 是一个基于 PyTorch 的 YOLO 系列算法开源工具箱。它是 [OpenMMLab](https://openmmlab.com/) 项目的一部分。
45+
MMYOLO 是一个基于 PyTorch 和 MMDetection 的 YOLO 系列算法开源工具箱。它是 [OpenMMLab](https://openmmlab.com/) 项目的一部分。
4646

4747
主分支代码目前支持 PyTorch 1.6 以上的版本。
4848

4949
<img src="https://user-images.githubusercontent.com/12907710/137271636-56ba1cd2-b110-4812-8221-b4c120320aa9.png"/>
50-
5150
<img src="https://user-images.githubusercontent.com/45811724/190993591-bd3f1f11-1c30-4b93-b5f4-05c9ff64ff7f.gif"/>
5251

5352
<details open>
5453
<summary>主要特性</summary>
5554

56-
- **公平便捷的算法评测**
55+
- **统一便捷的算法评测**
5756

58-
MMYOLO 统一各类 YOLO 算法模块, 并提供统一评测流程,用户可以公平便捷的进行对比分析
57+
MMYOLO 统一了各类 YOLO 算法模块的实现, 并提供了统一的评测流程,用户可以公平便捷地进行对比分析
5958

6059
- **丰富的入门和进阶文档**
6160

@@ -75,9 +74,9 @@ MMYOLO 是一个基于 PyTorch 的 YOLO 系列算法开源工具箱。它是 [Op
7574
**v0.1.0** 版本已经在 2022.9.21 发布:
7675

7776
- 基于 [OpenMMLab 2.0](https://github.com/open-mmlab)[MMDetection 3.0](https://github.com/open-mmlab/mmdetection/tree/3.x) 统一了各组件接口。
78-
- 支持 YOLOv5/YOLOX 训练和部署,支持 YOLOv6 推理和部署
79-
- 重构了 MMDetection 的 YOLOX,提供了更快的训练和推理速度
80-
- 提供了详细入门和进阶教程,详见 [中文教程](https://mmyolo.readthedocs.io/zh_CN/latest)
77+
- 支持 YOLOv5/YOLOX 训练,支持 YOLOv6 推理。即将支持部署。
78+
- 重构了 MMDetection 的 YOLOX,提供了更快的训练和推理速度
79+
- 提供了详细入门和进阶教程,详见 [中文教程](https://mmyolo.readthedocs.io/zh_CN/latest)
8180

8281
发布历史和更新细节请参考 [更新日志](https://mmyolo.readthedocs.io/zh_CN/latest/notes/changelog.html)
8382

@@ -101,11 +100,11 @@ mim install -e .
101100

102101
## 教程
103102

104-
MMYOLO 基于 MMDetection 开源库,并且采用相同的代码组织和设计方式。为了更好的使用本开源库,请先阅读 [MMDetection 概述](https://mmdetection.readthedocs.io/zh_CN/latest/get_started.html) 对 MMDetection 进行初步的了解
103+
MMYOLO 基于 MMDetection 开源库,并且采用相同的代码组织和设计方式。为了更好的使用本开源库,请先阅读 [MMDetection 概述](https://mmdetection.readthedocs.io/zh_CN/latest/get_started.html) 对 MMDetection 进行初步地了解
105104

106105
MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也可以了解 [MMDetection 用户指南和进阶指南](https://mmdetection.readthedocs.io/zh_CN/3.x/)
107106

108-
针对和 MMDetection 不同部分,我们也准备了用户指南和进阶指南,请阅读我们的 [文档](https://mmyolo.readthedocs.io/zh_CN/latest/)
107+
针对和 MMDetection 不同的部分,我们也准备了用户指南和进阶指南,请阅读我们的 [文档](https://mmyolo.readthedocs.io/zh_CN/latest/)
109108

110109
- 用户指南
111110

docs/en/notes/changelog.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,6 @@ We have released MMYOLO open source library, which is based on MMEngine, MMCV 2.
66

77
### Highlights
88

9-
1. Support for YOLOv5/YOLOX training and deployment, support for YOLOv6 inference and deployment.
10-
2. Refactored YOLOX for MMDetection to provide faster training and inference.
11-
3. Detailed introductory and advanced tutorials are provided, see the [English tutorial](https://mmyolo.readthedocs.io/en/latest).
9+
1. Support YOLOv5/YOLOX training, support YOLOv6 inference. Deployment will be supported soon.
10+
2. Refactored YOLOX from MMDetection to accelerate training and inference.
11+
3. Detailed introduction and advanced tutorials are provided, see the [English tutorial](https://mmyolo.readthedocs.io/en/latest).

docs/zh_cn/notes/changelog.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,6 @@
66

77
### 亮点
88

9-
1. 支持 YOLOv5/YOLOX 训练和部署,支持 YOLOv6 推理和部署
10-
2. 重构了 MMDetection 的 YOLOX,提供了更快的训练和推理速度
11-
3. 提供了详细入门和进阶教程, 包括 YOLOv5 从入门到部署、YOLOv5 算法原理和实现全解析、 特征图可视化等教程
9+
1. 支持 YOLOv5/YOLOX 训练,支持 YOLOv6 推理。部署即将支持。
10+
2. 重构了 MMDetection 的 YOLOX,提供了更快的训练和推理速度
11+
3. 提供了详细入门和进阶教程, 包括 YOLOv5 从入门到部署、YOLOv5 算法原理和实现全解析、 特征图可视化等教程

0 commit comments

Comments
 (0)