forked from edizquierdo/CE_locomotion
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload_data.py
127 lines (91 loc) · 3.93 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#####
# Script to load generated data on worm motion/cell activity & generate graphical output
#####
import numpy as np
from matplotlib import pyplot as plt
# import random
import helper_funcs as hf
def reload_single_run(show_plot=True, verbose=False):
N_muscles = 24 # Number of muscles alongside the body
N_units = 10 # Number of neural units in VNC
N_neuronsperunit = 6 # Number of neurons in a VNC neural unit (6 neurons)
N_stretchrec = 10 # Number of stretch receptors
N_neurons = N_neuronsperunit * N_units
fig, axs = plt.subplots(4, 2, figsize=(14, 8))
title_font_size = 10
### Worm neuron/muscle activation
act_data = np.loadtxt(hf.rename_file("act.dat")).T
offset = 1
sr = act_data[offset : N_stretchrec + offset]
axs[0, 0].set_title("Stretch receptors", fontsize=title_font_size)
axs[0, 1].set_title("Stretch receptors", fontsize=title_font_size)
for i in range(offset, N_stretchrec + offset):
axs[0, 0].plot(
act_data[0], act_data[i], label="SR %i" % (i - offset), linewidth=0.5
)
axs[0, 0].xaxis.set_ticklabels([])
# plt.legend()
axs[0, 1].imshow(sr, aspect="auto", interpolation="nearest")
axs[0, 1].xaxis.set_ticklabels([])
offset += N_stretchrec
axs[1, 0].set_title("Neurons", fontsize=title_font_size)
axs[1, 1].set_title("Neurons", fontsize=title_font_size)
for i in range(offset, N_neurons + offset):
axs[1, 0].plot(
act_data[0], act_data[i], label="Neu %i" % (i - offset), linewidth=0.5
)
axs[1, 0].xaxis.set_ticklabels([])
# plt.legend()
neu = act_data[offset : N_neurons + offset]
axs[1, 1].imshow(neu, aspect="auto", interpolation="nearest")
axs[1, 1].xaxis.set_ticklabels([])
offset += N_neurons
axs[2, 0].set_title("Muscles", fontsize=title_font_size)
axs[2, 1].set_title("Muscles", fontsize=title_font_size)
for i in range(offset, N_muscles + offset):
axs[2, 0].plot(
act_data[0], act_data[i], label="Mu %i" % (i - offset), linewidth=0.5
)
axs[2, 0].xaxis.set_ticklabels([])
# plt.legend()
mus = act_data[offset : N_muscles + offset]
axs[2, 1].imshow(mus, aspect="auto", interpolation="nearest")
axs[2, 1].xaxis.set_ticklabels([])
### Worm body curvature
curv_data = np.loadtxt(hf.rename_file("curv.dat"))
curv_data_less_time = curv_data.T[1:, :]
axs[3, 1].set_title("Body curvature", fontsize=title_font_size)
axs[3, 1].imshow(curv_data_less_time, aspect="auto")
### Body position
body_data = np.loadtxt(hf.rename_file("body.dat")).T
tmax = 1520
if tmax >= body_data.shape[1]:
tmax = body_data.shape[1]
num = 60.0
axs[3, 0].set_title("2D worm motion", fontsize=title_font_size)
for t in range(1, tmax, int(tmax / num)):
f = float(t) / tmax
color = "#%02x%02x00" % (int(0xFF * (f)), int(0xFF * (1 - f) * 0.8))
# color2 = "#%06x" % random.randint(0, 0xFFFFFF)
point_start = 1
for i in range(point_start, 50):
x = body_data[i * 3 + 1][t]
y = body_data[i * 3 + 2][t]
# y1 = body_data[i * 3 + 2][t]
if i == 1 and verbose:
print(
"%s + Plotting %i at t=%s (%s,%s), %s"
% ("\n" if i == point_start else "", i, t, x, y, color)
)
axs[3, 0].plot([x], [y], ".", color=color, markersize=3 if t == 1 else 0.4)
# print("%s - Plotting %i at t=%s (%s,%s), %s"%('\n' if i==point_start else '', i, t,x,y1, color))
# plt.plot([x],[y1],'.',color=color)
axs[3, 0].set_aspect("equal")
filename = hf.rename_file("ExampleActivity.png")
plt.savefig(filename, bbox_inches="tight", dpi=300)
print("Saved plot image to: %s" % filename)
if show_plot:
plt.show()
if __name__ == "__main__":
import sys
reload_single_run(show_plot="-nogui" not in sys.argv)