diff --git a/ITR/configs.py b/ITR/configs.py index b06d146f..a03e5fb8 100644 --- a/ITR/configs.py +++ b/ITR/configs.py @@ -84,14 +84,22 @@ class ColumnsConfig: class SectorsConfig: + POWER_UTILITY = "Electricity Utilities" + GAS_UTILITY = "Gas Utilities" + UTILITY = "Utilities" STEEL = "Steel" - ELECTRICITY = "Electricity Utilities" + ALUMINUM = "Aluminum" + OIL_AND_GAS = "Oil & Gas" + AUTOMOBILE = "Autos" + TRUCKING = "Trucking" + CEMENT = "Cement" + BUILDINGS = "Buildings" + TEXTILES = "Textiles" + CHEMICALS = "Chemicals" INFORMATION_TECHNOLOGY = "Information Technology" INDUSTRIALS = "Industrials" FINANCIALS = "Financials" HEALTH_CARE = "Health Care" - AUTOMOBILE = "Autos" - OIL_AND_GAS = "Oil & Gas" @classmethod def get_configured_sectors(cls) -> List[str]: @@ -99,7 +107,13 @@ def get_configured_sectors(cls) -> List[str]: Get a list of sectors configured in the tool. :return: A list of sectors string values """ - return [SectorsConfig.STEEL, SectorsConfig.ELECTRICITY, SectorsConfig.AUTOMOBILE, SectorsConfig.OIL_AND_GAS] + return [SectorsConfig.POWER_UTILITY, SectorsConfig.GAS_UTILITY, SectorsConfig.UTILITY, + SectorsConfig.STEEL, SectorsConfig.ALUMINUM, + SectorsConfig.OIL_AND_GAS, + SectorsConfig.AUTOMOBILE, SectorsConfig.TRUCKING, + SectorsConfig.CEMENT, SectorsConfig.BUILDINGS, + SectorsConfig.TEXTILES, SectorsConfig.CHEMICALS, + ] class VariablesConfig: diff --git a/ITR/data/excel.py b/ITR/data/excel.py index e2618691..60016a96 100644 --- a/ITR/data/excel.py +++ b/ITR/data/excel.py @@ -22,8 +22,8 @@ # Excel spreadsheets don't have units elaborated, so we translate sectors to units -sector_to_production_metric = {'Electricity Utilities': 'GJ', 'Steel': 'Fe_ton', 'Oil & Gas': 'boe', 'Autos': 'passenger km'} -sector_to_intensity_metric = {'Electricity Utilities': 't CO2/MWh', 'Steel': 't CO2/Fe_ton', 'Oil & Gas': 'kg CO2/boe', 'Autos': 'g CO2/(passenger km)'} +sector_to_production_metric = {'Electricity Utilities': 'GJ', 'Steel': 'Fe_ton', 'Oil & Gas': 'boe', 'Autos': 'pkm'} +sector_to_intensity_metric = {'Electricity Utilities': 't CO2/MWh', 'Steel': 't CO2/Fe_ton', 'Oil & Gas': 'kg CO2/boe', 'Autos': 'g CO2/pkm'} # TODO: Force validation for excel benchmarks diff --git a/ITR/interfaces.py b/ITR/interfaces.py index 21ba9225..33fae845 100644 --- a/ITR/interfaces.py +++ b/ITR/interfaces.py @@ -492,15 +492,27 @@ def _fixup_year_value_list(self, ListType, u_list, metric, inferred_metric): return r_list def _sector_to_production_units(self, sector, region="Global"): + sector_unit_dict = { + 'Electricity Utilities': { 'North America':'MWh', 'Global': 'GJ' }, + 'Gas Utilities': { 'Global': 'PJ' }, + 'Utilities': { 'Global': 'PJ' }, + 'Steel': { 'Global': 't Steel' }, + 'Aluminum': { 'Global': 't Aluminum' }, + 'Oil & Gas': { 'Global': 'mmboe' }, + 'Autos': { 'Global': 'pkm' }, + 'Trucking': { 'Global': 'tkm' }, + 'Cement': { 'Global': 't Cement' }, + 'Buildings': { 'Global': 'billion m**2' }, # Should it be 'built m**2' ? + 'Textiles': { 'Global': 'billion USD' }, + 'Chemicals': { 'Global': 'billion USD' }, + } units = None - if sector == 'Electricity Utilities': - units = 'MWh' if region == 'North America' else 'GJ' - elif sector == 'Steel': - units = 'Fe_ton' - elif sector == 'Oil & Gas': - units = 'mmboe' - elif sector == 'Autos': - units = '(passenger km)' + if sector_unit_dict.get(sector): + region_unit_dict = sector_unit_dict[sector] + if region_unit_dict.get(region): + units = region_unit_dict[region] + else: + units = region_unit_dict['Global'] else: raise ValueError(f"No source of production metrics for {self.company_name}") return units diff --git a/examples/ITR_UI.py b/examples/ITR_UI.py index 1dfc7542..0dfe7f05 100644 --- a/examples/ITR_UI.py +++ b/examples/ITR_UI.py @@ -94,9 +94,9 @@ # Emission intensities -benchmark_EI_OECM_file = "benchmark_EI_OECM.json" benchmark_EI_OECM_PC_file = "benchmark_EI_OECM_PC.json" benchmark_EI_OECM_S3_file = "benchmark_EI_OECM_S3.json" +benchmark_EI_OECM_file = "benchmark_EI_OECM.json" # Deprecated! benchmark_EI_TPI_15_file = "benchmark_EI_TPI_1_5_degrees.json" benchmark_EI_TPI_file = "benchmark_EI_TPI_2_degrees.json" benchmark_EI_TPI_below_2_file = "benchmark_EI_TPI_below_2_degrees.json" @@ -114,9 +114,7 @@ # load default intensity benchmarks def recalculate_individual_itr(scenario): - if scenario == 'OECM': - benchmark_file = benchmark_EI_OECM_file - elif scenario == 'OECM_PC': + if scenario == 'OECM_PC': benchmark_file = benchmark_EI_OECM_PC_file elif scenario == 'OECM_S3': benchmark_file = benchmark_EI_OECM_S3_file @@ -124,6 +122,9 @@ def recalculate_individual_itr(scenario): benchmark_file = benchmark_EI_TPI_file elif scenario == 'TPI_15_degrees': benchmark_file = benchmark_EI_TPI_15_file + elif scenario == 'OECM': + benchmark_file = benchmark_EI_OECM_file + logger.info('OECM scenario is for backward compatibility only. Use OECM_PC instead.') else: benchmark_file = benchmark_EI_TPI_below_2_file # load intensity benchmarks @@ -136,7 +137,7 @@ def recalculate_individual_itr(scenario): return df -initial_portfolio = recalculate_individual_itr('OECM') +initial_portfolio = recalculate_individual_itr('OECM_PC') amended_portfolio_global = initial_portfolio.copy() filt_df = initial_portfolio.copy() @@ -279,14 +280,14 @@ def dequantify_plotly(px_func, df, **kwargs): ), dcc.Dropdown(id="scenario-dropdown", options=[ # 16.05.2022: make this dynamic - {'label': 'OECM 1.5 degrees', 'value': 'OECM'}, {'label': 'OECM (Prod-Centric) 1.5 degC', 'value': 'OECM_PC'}, {'label': 'OECM (Scope 3) 1.5 degC', 'value': 'OECM_S3'}, + {'label': 'OECM (Deprecated) 1.5 degrees', 'value': 'OECM'}, {'label': 'TPI 1.5 degrees', 'value': 'TPI_15_degrees'}, {'label': 'TPI 2 degrees', 'value': 'TPI_2_degrees'}, {'label': 'TPI below 2 degrees', 'value': 'TPI_below_2_degrees'} ], - value='OECM', + value='OECM_PC', clearable=False, placeholder="Select emission scenario"), html.Div(id='hidden-div', style={'display': 'none'}), diff --git a/examples/data/20220927 ITR Tool Sample Data.xlsx b/examples/data/20220927 ITR Tool Sample Data.xlsx new file mode 100644 index 00000000..5df9a43d Binary files /dev/null and b/examples/data/20220927 ITR Tool Sample Data.xlsx differ diff --git a/examples/data/20220927 ITR Tool Test Data.xlsx b/examples/data/20220927 ITR Tool Test Data.xlsx new file mode 100644 index 00000000..5f0e8c9f Binary files /dev/null and b/examples/data/20220927 ITR Tool Test Data.xlsx differ diff --git a/examples/data/json-units/benchmark_EI_OECM_PC.json b/examples/data/json-units/benchmark_EI_OECM_PC.json index 404a6a19..4ca56bc0 100644 --- a/examples/data/json-units/benchmark_EI_OECM_PC.json +++ b/examples/data/json-units/benchmark_EI_OECM_PC.json @@ -848,7 +848,7 @@ "sector": "Gas Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -856,131 +856,131 @@ "projections": [ { "year": 2019, - "value": 0.238 + "value": 0.0662 }, { "year": 2020, - "value": 0.237 + "value": 0.0659 }, { "year": 2021, - "value": 0.236 + "value": 0.0655 }, { "year": 2022, - "value": 0.235 + "value": 0.0651 }, { "year": 2023, - "value": 0.233 + "value": 0.0648 }, { "year": 2024, - "value": 0.232 + "value": 0.0644 }, { "year": 2025, - "value": 0.231 + "value": 0.0641 }, { "year": 2026, - "value": 0.229 + "value": 0.0636 }, { "year": 2027, - "value": 0.227 + "value": 0.0631 }, { "year": 2028, - "value": 0.225 + "value": 0.0626 }, { "year": 2029, - "value": 0.223 + "value": 0.0621 }, { "year": 2030, - "value": 0.222 + "value": 0.0616 }, { "year": 2031, - "value": 0.217 + "value": 0.0602 }, { "year": 2032, - "value": 0.212 + "value": 0.0589 }, { "year": 2033, - "value": 0.208 + "value": 0.0577 }, { "year": 2034, - "value": 0.203 + "value": 0.0564 }, { "year": 2035, - "value": 0.199 + "value": 0.0552 }, { "year": 2036, - "value": 0.19 + "value": 0.0529 }, { "year": 2037, - "value": 0.183 + "value": 0.0507 }, { "year": 2038, - "value": 0.175 + "value": 0.0486 }, { "year": 2039, - "value": 0.168 + "value": 0.0466 }, { "year": 2040, - "value": 0.161 + "value": 0.0447 }, { "year": 2041, - "value": 0.152 + "value": 0.0423 }, { "year": 2042, - "value": 0.142 + "value": 0.0394 }, { "year": 2043, - "value": 0.129 + "value": 0.0358 }, { "year": 2044, - "value": 0.114 + "value": 0.0317 }, { "year": 2045, - "value": 0.0964 + "value": 0.0268 }, { "year": 2046, - "value": 0.0838 + "value": 0.0233 }, { "year": 2047, - "value": 0.0688 + "value": 0.0191 }, { "year": 2048, - "value": 0.0511 + "value": 0.0142 }, { "year": 2049, - "value": 0.0304 + "value": 0.00844 }, { "year": 2050, - "value": 0.00634 + "value": 0.00176 } ] }, @@ -988,7 +988,7 @@ "sector": "Gas Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -996,131 +996,131 @@ "projections": [ { "year": 2019, - "value": 0.238 + "value": 0.066 }, { "year": 2020, - "value": 0.237 + "value": 0.0657 }, { "year": 2021, - "value": 0.236 + "value": 0.0655 }, { "year": 2022, - "value": 0.235 + "value": 0.0652 }, { "year": 2023, - "value": 0.234 + "value": 0.0649 }, { "year": 2024, - "value": 0.233 + "value": 0.0646 }, { "year": 2025, - "value": 0.232 + "value": 0.0644 }, { "year": 2026, - "value": 0.23 + "value": 0.0639 }, { "year": 2027, - "value": 0.228 + "value": 0.0634 }, { "year": 2028, - "value": 0.226 + "value": 0.0629 }, { "year": 2029, - "value": 0.225 + "value": 0.0624 }, { "year": 2030, - "value": 0.223 + "value": 0.0619 }, { "year": 2031, - "value": 0.22 + "value": 0.061 }, { "year": 2032, - "value": 0.217 + "value": 0.0602 }, { "year": 2033, - "value": 0.213 + "value": 0.0593 }, { "year": 2034, - "value": 0.21 + "value": 0.0584 }, { "year": 2035, - "value": 0.207 + "value": 0.0576 }, { "year": 2036, - "value": 0.199 + "value": 0.0552 }, { "year": 2037, - "value": 0.191 + "value": 0.053 }, { "year": 2038, - "value": 0.183 + "value": 0.0508 }, { "year": 2039, - "value": 0.175 + "value": 0.0487 }, { "year": 2040, - "value": 0.168 + "value": 0.0467 }, { "year": 2041, - "value": 0.16 + "value": 0.0445 }, { "year": 2042, - "value": 0.149 + "value": 0.0414 }, { "year": 2043, - "value": 0.134 + "value": 0.0373 }, { "year": 2044, - "value": 0.115 + "value": 0.032 }, { "year": 2045, - "value": 0.091 + "value": 0.0253 }, { "year": 2046, - "value": 0.0774 + "value": 0.0215 }, { "year": 2047, - "value": 0.062 + "value": 0.0172 }, { "year": 2048, - "value": 0.0447 + "value": 0.0124 }, { "year": 2049, - "value": 0.0253 + "value": 0.00702 }, { "year": 2050, - "value": 0.00354 + "value": 0.000982 } ] }, @@ -1128,7 +1128,7 @@ "sector": "Gas Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -1136,131 +1136,131 @@ "projections": [ { "year": 2019, - "value": 0.229 + "value": 0.0636 }, { "year": 2020, - "value": 0.229 + "value": 0.0637 }, { "year": 2021, - "value": 0.229 + "value": 0.0637 }, { "year": 2022, - "value": 0.229 + "value": 0.0637 }, { "year": 2023, - "value": 0.229 + "value": 0.0637 }, { "year": 2024, - "value": 0.229 + "value": 0.0637 }, { "year": 2025, - "value": 0.23 + "value": 0.0638 }, { "year": 2026, - "value": 0.228 + "value": 0.0632 }, { "year": 2027, - "value": 0.226 + "value": 0.0627 }, { "year": 2028, - "value": 0.224 + "value": 0.0622 }, { "year": 2029, - "value": 0.222 + "value": 0.0617 }, { "year": 2030, - "value": 0.22 + "value": 0.0611 }, { "year": 2031, - "value": 0.215 + "value": 0.0597 }, { "year": 2032, - "value": 0.21 + "value": 0.0583 }, { "year": 2033, - "value": 0.205 + "value": 0.057 }, { "year": 2034, - "value": 0.2 + "value": 0.0556 }, { "year": 2035, - "value": 0.196 + "value": 0.0543 }, { "year": 2036, - "value": 0.186 + "value": 0.0518 }, { "year": 2037, - "value": 0.178 + "value": 0.0494 }, { "year": 2038, - "value": 0.17 + "value": 0.0471 }, { "year": 2039, - "value": 0.162 + "value": 0.0449 }, { "year": 2040, - "value": 0.154 + "value": 0.0428 }, { "year": 2041, - "value": 0.146 + "value": 0.0407 }, { "year": 2042, - "value": 0.139 + "value": 0.0387 }, { "year": 2043, - "value": 0.132 + "value": 0.0368 }, { "year": 2044, - "value": 0.126 + "value": 0.035 }, { "year": 2045, - "value": 0.12 + "value": 0.0332 }, { "year": 2046, - "value": 0.114 + "value": 0.0316 }, { "year": 2047, - "value": 0.108 + "value": 0.0301 }, { "year": 2048, - "value": 0.103 + "value": 0.0287 }, { "year": 2049, - "value": 0.0982 + "value": 0.0273 }, { "year": 2050, - "value": 0.0935 + "value": 0.026 } ] }, @@ -1268,7 +1268,7 @@ "sector": "Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -1276,131 +1276,131 @@ "projections": [ { "year": 2019, - "value": 0.368 + "value": 0.102 }, { "year": 2020, - "value": 0.348 + "value": 0.0967 }, { "year": 2021, - "value": 0.329 + "value": 0.0914 }, { "year": 2022, - "value": 0.311 + "value": 0.0864 }, { "year": 2023, - "value": 0.294 + "value": 0.0817 }, { "year": 2024, - "value": 0.278 + "value": 0.0773 }, { "year": 2025, - "value": 0.263 + "value": 0.0731 }, { "year": 2026, - "value": 0.243 + "value": 0.0674 }, { "year": 2027, - "value": 0.224 + "value": 0.0622 }, { "year": 2028, - "value": 0.206 + "value": 0.0573 }, { "year": 2029, - "value": 0.19 + "value": 0.0529 }, { "year": 2030, - "value": 0.176 + "value": 0.0488 }, { "year": 2031, - "value": 0.157 + "value": 0.0437 }, { "year": 2032, - "value": 0.141 + "value": 0.0392 }, { "year": 2033, - "value": 0.126 + "value": 0.0351 }, { "year": 2034, - "value": 0.113 + "value": 0.0314 }, { "year": 2035, - "value": 0.101 + "value": 0.0282 }, { "year": 2036, - "value": 0.0914 + "value": 0.0254 }, { "year": 2037, - "value": 0.0823 + "value": 0.0229 }, { "year": 2038, - "value": 0.0742 + "value": 0.0206 }, { "year": 2039, - "value": 0.0669 + "value": 0.0186 }, { "year": 2040, - "value": 0.0603 + "value": 0.0167 }, { "year": 2041, - "value": 0.0532 + "value": 0.0148 }, { "year": 2042, - "value": 0.0461 + "value": 0.0128 }, { "year": 2043, - "value": 0.039 + "value": 0.0108 }, { "year": 2044, - "value": 0.0319 + "value": 0.00887 }, { "year": 2045, - "value": 0.0248 + "value": 0.00689 }, { "year": 2046, - "value": 0.02 + "value": 0.00556 }, { "year": 2047, - "value": 0.0152 + "value": 0.00423 }, { "year": 2048, - "value": 0.0105 + "value": 0.0029 }, { "year": 2049, - "value": 0.00566 + "value": 0.00157 }, { "year": 2050, - "value": 0.000868 + "value": 0.000241 } ] }, @@ -1408,7 +1408,7 @@ "sector": "Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -1416,131 +1416,131 @@ "projections": [ { "year": 2019, - "value": 0.255 + "value": 0.0707 }, { "year": 2020, - "value": 0.245 + "value": 0.068 }, { "year": 2021, - "value": 0.236 + "value": 0.0655 }, { "year": 2022, - "value": 0.227 + "value": 0.063 }, { "year": 2023, - "value": 0.218 + "value": 0.0606 }, { "year": 2024, - "value": 0.21 + "value": 0.0583 }, { "year": 2025, - "value": 0.202 + "value": 0.0561 }, { "year": 2026, - "value": 0.188 + "value": 0.0522 }, { "year": 2027, - "value": 0.175 + "value": 0.0487 }, { "year": 2028, - "value": 0.163 + "value": 0.0454 }, { "year": 2029, - "value": 0.152 + "value": 0.0423 }, { "year": 2030, - "value": 0.142 + "value": 0.0394 }, { "year": 2031, - "value": 0.133 + "value": 0.0368 }, { "year": 2032, - "value": 0.124 + "value": 0.0344 }, { "year": 2033, - "value": 0.116 + "value": 0.0322 }, { "year": 2034, - "value": 0.108 + "value": 0.0301 }, { "year": 2035, - "value": 0.101 + "value": 0.0281 }, { "year": 2036, - "value": 0.0903 + "value": 0.0251 }, { "year": 2037, - "value": 0.0807 + "value": 0.0224 }, { "year": 2038, - "value": 0.072 + "value": 0.02 }, { "year": 2039, - "value": 0.0643 + "value": 0.0179 }, { "year": 2040, - "value": 0.0574 + "value": 0.016 }, { "year": 2041, - "value": 0.0507 + "value": 0.0141 }, { "year": 2042, - "value": 0.0437 + "value": 0.0121 }, { "year": 2043, - "value": 0.0364 + "value": 0.0101 }, { "year": 2044, - "value": 0.0289 + "value": 0.00803 }, { "year": 2045, - "value": 0.0211 + "value": 0.00587 }, { "year": 2046, - "value": 0.0172 + "value": 0.00476 }, { "year": 2047, - "value": 0.0131 + "value": 0.00364 }, { "year": 2048, - "value": 0.00897 + "value": 0.00249 }, { "year": 2049, - "value": 0.00477 + "value": 0.00132 }, { "year": 2050, - "value": 0.000483 + "value": 0.000134 } ] }, @@ -1548,7 +1548,7 @@ "sector": "Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -1556,131 +1556,131 @@ "projections": [ { "year": 2019, - "value": 0.288 + "value": 0.0799 }, { "year": 2020, - "value": 0.273 + "value": 0.0759 }, { "year": 2021, - "value": 0.26 + "value": 0.0721 }, { "year": 2022, - "value": 0.247 + "value": 0.0685 }, { "year": 2023, - "value": 0.234 + "value": 0.0651 }, { "year": 2024, - "value": 0.223 + "value": 0.0618 }, { "year": 2025, - "value": 0.211 + "value": 0.0587 }, { "year": 2026, - "value": 0.19 + "value": 0.0527 }, { "year": 2027, - "value": 0.167 + "value": 0.0464 }, { "year": 2028, - "value": 0.143 + "value": 0.0398 }, { "year": 2029, - "value": 0.119 + "value": 0.0331 }, { "year": 2030, - "value": 0.0937 + "value": 0.026 }, { "year": 2031, - "value": 0.0896 + "value": 0.0249 }, { "year": 2032, - "value": 0.0857 + "value": 0.0238 }, { "year": 2033, - "value": 0.0819 + "value": 0.0228 }, { "year": 2034, - "value": 0.0784 + "value": 0.0218 }, { "year": 2035, - "value": 0.0749 + "value": 0.0208 }, { "year": 2036, - "value": 0.0679 + "value": 0.0189 }, { "year": 2037, - "value": 0.0607 + "value": 0.0169 }, { "year": 2038, - "value": 0.0534 + "value": 0.0148 }, { "year": 2039, - "value": 0.0458 + "value": 0.0127 }, { "year": 2040, - "value": 0.0381 + "value": 0.0106 }, { "year": 2041, - "value": 0.0347 + "value": 0.00963 }, { "year": 2042, - "value": 0.0315 + "value": 0.00876 }, { "year": 2043, - "value": 0.0287 + "value": 0.00797 }, { "year": 2044, - "value": 0.0261 + "value": 0.00725 }, { "year": 2045, - "value": 0.0237 + "value": 0.00659 }, { "year": 2046, - "value": 0.0222 + "value": 0.00616 }, { "year": 2047, - "value": 0.0207 + "value": 0.00576 }, { "year": 2048, - "value": 0.0194 + "value": 0.00539 }, { "year": 2049, - "value": 0.0181 + "value": 0.00503 }, { "year": 2050, - "value": 0.0169 + "value": 0.00471 } ] }, @@ -5892,7 +5892,7 @@ "sector": "Gas Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -5900,131 +5900,131 @@ "projections": [ { "year": 2019, - "value": 0.238 + "value": 0.0662 }, { "year": 2020, - "value": 0.237 + "value": 0.0659 }, { "year": 2021, - "value": 0.236 + "value": 0.0655 }, { "year": 2022, - "value": 0.235 + "value": 0.0651 }, { "year": 2023, - "value": 0.233 + "value": 0.0648 }, { "year": 2024, - "value": 0.232 + "value": 0.0644 }, { "year": 2025, - "value": 0.231 + "value": 0.0641 }, { "year": 2026, - "value": 0.229 + "value": 0.0636 }, { "year": 2027, - "value": 0.227 + "value": 0.0631 }, { "year": 2028, - "value": 0.225 + "value": 0.0626 }, { "year": 2029, - "value": 0.223 + "value": 0.0621 }, { "year": 2030, - "value": 0.222 + "value": 0.0616 }, { "year": 2031, - "value": 0.217 + "value": 0.0602 }, { "year": 2032, - "value": 0.212 + "value": 0.0589 }, { "year": 2033, - "value": 0.208 + "value": 0.0577 }, { "year": 2034, - "value": 0.203 + "value": 0.0564 }, { "year": 2035, - "value": 0.199 + "value": 0.0552 }, { "year": 2036, - "value": 0.19 + "value": 0.0529 }, { "year": 2037, - "value": 0.183 + "value": 0.0507 }, { "year": 2038, - "value": 0.175 + "value": 0.0486 }, { "year": 2039, - "value": 0.168 + "value": 0.0466 }, { "year": 2040, - "value": 0.161 + "value": 0.0447 }, { "year": 2041, - "value": 0.152 + "value": 0.0423 }, { "year": 2042, - "value": 0.142 + "value": 0.0394 }, { "year": 2043, - "value": 0.129 + "value": 0.0358 }, { "year": 2044, - "value": 0.114 + "value": 0.0317 }, { "year": 2045, - "value": 0.0964 + "value": 0.0268 }, { "year": 2046, - "value": 0.0838 + "value": 0.0233 }, { "year": 2047, - "value": 0.0688 + "value": 0.0191 }, { "year": 2048, - "value": 0.0511 + "value": 0.0142 }, { "year": 2049, - "value": 0.0304 + "value": 0.00844 }, { "year": 2050, - "value": 0.00634 + "value": 0.00176 } ] }, @@ -6032,7 +6032,7 @@ "sector": "Gas Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6040,131 +6040,131 @@ "projections": [ { "year": 2019, - "value": 0.238 + "value": 0.066 }, { "year": 2020, - "value": 0.237 + "value": 0.0657 }, { "year": 2021, - "value": 0.236 + "value": 0.0655 }, { "year": 2022, - "value": 0.235 + "value": 0.0652 }, { "year": 2023, - "value": 0.234 + "value": 0.0649 }, { "year": 2024, - "value": 0.233 + "value": 0.0646 }, { "year": 2025, - "value": 0.232 + "value": 0.0644 }, { "year": 2026, - "value": 0.23 + "value": 0.0639 }, { "year": 2027, - "value": 0.228 + "value": 0.0634 }, { "year": 2028, - "value": 0.226 + "value": 0.0629 }, { "year": 2029, - "value": 0.225 + "value": 0.0624 }, { "year": 2030, - "value": 0.223 + "value": 0.0619 }, { "year": 2031, - "value": 0.22 + "value": 0.061 }, { "year": 2032, - "value": 0.217 + "value": 0.0602 }, { "year": 2033, - "value": 0.213 + "value": 0.0593 }, { "year": 2034, - "value": 0.21 + "value": 0.0584 }, { "year": 2035, - "value": 0.207 + "value": 0.0576 }, { "year": 2036, - "value": 0.199 + "value": 0.0552 }, { "year": 2037, - "value": 0.191 + "value": 0.053 }, { "year": 2038, - "value": 0.183 + "value": 0.0508 }, { "year": 2039, - "value": 0.175 + "value": 0.0487 }, { "year": 2040, - "value": 0.168 + "value": 0.0467 }, { "year": 2041, - "value": 0.16 + "value": 0.0445 }, { "year": 2042, - "value": 0.149 + "value": 0.0414 }, { "year": 2043, - "value": 0.134 + "value": 0.0373 }, { "year": 2044, - "value": 0.115 + "value": 0.032 }, { "year": 2045, - "value": 0.091 + "value": 0.0253 }, { "year": 2046, - "value": 0.0774 + "value": 0.0215 }, { "year": 2047, - "value": 0.062 + "value": 0.0172 }, { "year": 2048, - "value": 0.0447 + "value": 0.0124 }, { "year": 2049, - "value": 0.0253 + "value": 0.00702 }, { "year": 2050, - "value": 0.00354 + "value": 0.000982 } ] }, @@ -6172,7 +6172,7 @@ "sector": "Gas Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6180,131 +6180,131 @@ "projections": [ { "year": 2019, - "value": 0.229 + "value": 0.0636 }, { "year": 2020, - "value": 0.229 + "value": 0.0637 }, { "year": 2021, - "value": 0.229 + "value": 0.0637 }, { "year": 2022, - "value": 0.229 + "value": 0.0637 }, { "year": 2023, - "value": 0.229 + "value": 0.0637 }, { "year": 2024, - "value": 0.229 + "value": 0.0637 }, { "year": 2025, - "value": 0.23 + "value": 0.0638 }, { "year": 2026, - "value": 0.228 + "value": 0.0632 }, { "year": 2027, - "value": 0.226 + "value": 0.0627 }, { "year": 2028, - "value": 0.224 + "value": 0.0622 }, { "year": 2029, - "value": 0.222 + "value": 0.0617 }, { "year": 2030, - "value": 0.22 + "value": 0.0611 }, { "year": 2031, - "value": 0.215 + "value": 0.0597 }, { "year": 2032, - "value": 0.21 + "value": 0.0583 }, { "year": 2033, - "value": 0.205 + "value": 0.057 }, { "year": 2034, - "value": 0.2 + "value": 0.0556 }, { "year": 2035, - "value": 0.196 + "value": 0.0543 }, { "year": 2036, - "value": 0.186 + "value": 0.0518 }, { "year": 2037, - "value": 0.178 + "value": 0.0494 }, { "year": 2038, - "value": 0.17 + "value": 0.0471 }, { "year": 2039, - "value": 0.162 + "value": 0.0449 }, { "year": 2040, - "value": 0.154 + "value": 0.0428 }, { "year": 2041, - "value": 0.146 + "value": 0.0407 }, { "year": 2042, - "value": 0.139 + "value": 0.0387 }, { "year": 2043, - "value": 0.132 + "value": 0.0368 }, { "year": 2044, - "value": 0.126 + "value": 0.035 }, { "year": 2045, - "value": 0.12 + "value": 0.0332 }, { "year": 2046, - "value": 0.114 + "value": 0.0316 }, { "year": 2047, - "value": 0.108 + "value": 0.0301 }, { "year": 2048, - "value": 0.103 + "value": 0.0287 }, { "year": 2049, - "value": 0.0982 + "value": 0.0273 }, { "year": 2050, - "value": 0.0935 + "value": 0.026 } ] }, @@ -6312,7 +6312,7 @@ "sector": "Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6320,131 +6320,131 @@ "projections": [ { "year": 2019, - "value": 0.368 + "value": 0.102 }, { "year": 2020, - "value": 0.348 + "value": 0.0967 }, { "year": 2021, - "value": 0.329 + "value": 0.0914 }, { "year": 2022, - "value": 0.311 + "value": 0.0864 }, { "year": 2023, - "value": 0.294 + "value": 0.0817 }, { "year": 2024, - "value": 0.278 + "value": 0.0773 }, { "year": 2025, - "value": 0.263 + "value": 0.0731 }, { "year": 2026, - "value": 0.243 + "value": 0.0674 }, { "year": 2027, - "value": 0.224 + "value": 0.0622 }, { "year": 2028, - "value": 0.206 + "value": 0.0573 }, { "year": 2029, - "value": 0.19 + "value": 0.0529 }, { "year": 2030, - "value": 0.176 + "value": 0.0488 }, { "year": 2031, - "value": 0.157 + "value": 0.0437 }, { "year": 2032, - "value": 0.141 + "value": 0.0392 }, { "year": 2033, - "value": 0.126 + "value": 0.0351 }, { "year": 2034, - "value": 0.113 + "value": 0.0314 }, { "year": 2035, - "value": 0.101 + "value": 0.0282 }, { "year": 2036, - "value": 0.0914 + "value": 0.0254 }, { "year": 2037, - "value": 0.0823 + "value": 0.0229 }, { "year": 2038, - "value": 0.0742 + "value": 0.0206 }, { "year": 2039, - "value": 0.0669 + "value": 0.0186 }, { "year": 2040, - "value": 0.0603 + "value": 0.0167 }, { "year": 2041, - "value": 0.0532 + "value": 0.0148 }, { "year": 2042, - "value": 0.0461 + "value": 0.0128 }, { "year": 2043, - "value": 0.039 + "value": 0.0108 }, { "year": 2044, - "value": 0.0319 + "value": 0.00887 }, { "year": 2045, - "value": 0.0248 + "value": 0.00689 }, { "year": 2046, - "value": 0.02 + "value": 0.00556 }, { "year": 2047, - "value": 0.0152 + "value": 0.00423 }, { "year": 2048, - "value": 0.0105 + "value": 0.0029 }, { "year": 2049, - "value": 0.00566 + "value": 0.00157 }, { "year": 2050, - "value": 0.000868 + "value": 0.000241 } ] }, @@ -6452,7 +6452,7 @@ "sector": "Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6460,131 +6460,131 @@ "projections": [ { "year": 2019, - "value": 0.255 + "value": 0.0707 }, { "year": 2020, - "value": 0.245 + "value": 0.068 }, { "year": 2021, - "value": 0.236 + "value": 0.0655 }, { "year": 2022, - "value": 0.227 + "value": 0.063 }, { "year": 2023, - "value": 0.218 + "value": 0.0606 }, { "year": 2024, - "value": 0.21 + "value": 0.0583 }, { "year": 2025, - "value": 0.202 + "value": 0.0561 }, { "year": 2026, - "value": 0.188 + "value": 0.0522 }, { "year": 2027, - "value": 0.175 + "value": 0.0487 }, { "year": 2028, - "value": 0.163 + "value": 0.0454 }, { "year": 2029, - "value": 0.152 + "value": 0.0423 }, { "year": 2030, - "value": 0.142 + "value": 0.0394 }, { "year": 2031, - "value": 0.133 + "value": 0.0368 }, { "year": 2032, - "value": 0.124 + "value": 0.0344 }, { "year": 2033, - "value": 0.116 + "value": 0.0322 }, { "year": 2034, - "value": 0.108 + "value": 0.0301 }, { "year": 2035, - "value": 0.101 + "value": 0.0281 }, { "year": 2036, - "value": 0.0903 + "value": 0.0251 }, { "year": 2037, - "value": 0.0807 + "value": 0.0224 }, { "year": 2038, - "value": 0.072 + "value": 0.02 }, { "year": 2039, - "value": 0.0643 + "value": 0.0179 }, { "year": 2040, - "value": 0.0574 + "value": 0.016 }, { "year": 2041, - "value": 0.0507 + "value": 0.0141 }, { "year": 2042, - "value": 0.0437 + "value": 0.0121 }, { "year": 2043, - "value": 0.0364 + "value": 0.0101 }, { "year": 2044, - "value": 0.0289 + "value": 0.00803 }, { "year": 2045, - "value": 0.0211 + "value": 0.00587 }, { "year": 2046, - "value": 0.0172 + "value": 0.00476 }, { "year": 2047, - "value": 0.0131 + "value": 0.00364 }, { "year": 2048, - "value": 0.00897 + "value": 0.00249 }, { "year": 2049, - "value": 0.00477 + "value": 0.00132 }, { "year": 2050, - "value": 0.000483 + "value": 0.000134 } ] }, @@ -6592,7 +6592,7 @@ "sector": "Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6600,131 +6600,131 @@ "projections": [ { "year": 2019, - "value": 0.288 + "value": 0.0799 }, { "year": 2020, - "value": 0.273 + "value": 0.0759 }, { "year": 2021, - "value": 0.26 + "value": 0.0721 }, { "year": 2022, - "value": 0.247 + "value": 0.0685 }, { "year": 2023, - "value": 0.234 + "value": 0.0651 }, { "year": 2024, - "value": 0.223 + "value": 0.0618 }, { "year": 2025, - "value": 0.211 + "value": 0.0587 }, { "year": 2026, - "value": 0.19 + "value": 0.0527 }, { "year": 2027, - "value": 0.167 + "value": 0.0464 }, { "year": 2028, - "value": 0.143 + "value": 0.0398 }, { "year": 2029, - "value": 0.119 + "value": 0.0331 }, { "year": 2030, - "value": 0.0937 + "value": 0.026 }, { "year": 2031, - "value": 0.0896 + "value": 0.0249 }, { "year": 2032, - "value": 0.0857 + "value": 0.0238 }, { "year": 2033, - "value": 0.0819 + "value": 0.0228 }, { "year": 2034, - "value": 0.0784 + "value": 0.0218 }, { "year": 2035, - "value": 0.0749 + "value": 0.0208 }, { "year": 2036, - "value": 0.0679 + "value": 0.0189 }, { "year": 2037, - "value": 0.0607 + "value": 0.0169 }, { "year": 2038, - "value": 0.0534 + "value": 0.0148 }, { "year": 2039, - "value": 0.0458 + "value": 0.0127 }, { "year": 2040, - "value": 0.0381 + "value": 0.0106 }, { "year": 2041, - "value": 0.0347 + "value": 0.00963 }, { "year": 2042, - "value": 0.0315 + "value": 0.00876 }, { "year": 2043, - "value": 0.0287 + "value": 0.00797 }, { "year": 2044, - "value": 0.0261 + "value": 0.00725 }, { "year": 2045, - "value": 0.0237 + "value": 0.00659 }, { "year": 2046, - "value": 0.0222 + "value": 0.00616 }, { "year": 2047, - "value": 0.0207 + "value": 0.00576 }, { "year": 2048, - "value": 0.0194 + "value": 0.00539 }, { "year": 2049, - "value": 0.0181 + "value": 0.00503 }, { "year": 2050, - "value": 0.0169 + "value": 0.00471 } ] }, diff --git a/examples/data/json-units/benchmark_EI_OECM_S3.json b/examples/data/json-units/benchmark_EI_OECM_S3.json index 054e11a3..31fe1afe 100644 --- a/examples/data/json-units/benchmark_EI_OECM_S3.json +++ b/examples/data/json-units/benchmark_EI_OECM_S3.json @@ -848,7 +848,7 @@ "sector": "Gas Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -856,131 +856,131 @@ "projections": [ { "year": 2019, - "value": 0.0393 + "value": 0.0109 }, { "year": 2020, - "value": 0.0376 + "value": 0.0105 }, { "year": 2021, - "value": 0.036 + "value": 0.01 }, { "year": 2022, - "value": 0.0345 + "value": 0.00958 }, { "year": 2023, - "value": 0.033 + "value": 0.00917 }, { "year": 2024, - "value": 0.0316 + "value": 0.00878 }, { "year": 2025, - "value": 0.0303 + "value": 0.0084 }, { "year": 2026, - "value": 0.0292 + "value": 0.00812 }, { "year": 2027, - "value": 0.0283 + "value": 0.00786 }, { "year": 2028, - "value": 0.0273 + "value": 0.0076 }, { "year": 2029, - "value": 0.0264 + "value": 0.00734 }, { "year": 2030, - "value": 0.0256 + "value": 0.0071 }, { "year": 2031, - "value": 0.0247 + "value": 0.00686 }, { "year": 2032, - "value": 0.0238 + "value": 0.00662 }, { "year": 2033, - "value": 0.023 + "value": 0.0064 }, { "year": 2034, - "value": 0.0222 + "value": 0.00618 }, { "year": 2035, - "value": 0.0215 + "value": 0.00597 }, { "year": 2036, - "value": 0.0206 + "value": 0.00571 }, { "year": 2037, - "value": 0.0197 + "value": 0.00547 }, { "year": 2038, - "value": 0.0189 + "value": 0.00524 }, { "year": 2039, - "value": 0.0181 + "value": 0.00502 }, { "year": 2040, - "value": 0.0173 + "value": 0.0048 }, { "year": 2041, - "value": 0.0166 + "value": 0.00461 }, { "year": 2042, - "value": 0.0157 + "value": 0.00437 }, { "year": 2043, - "value": 0.0147 + "value": 0.00408 }, { "year": 2044, - "value": 0.0134 + "value": 0.00373 }, { "year": 2045, - "value": 0.0119 + "value": 0.00331 }, { "year": 2046, - "value": 0.0109 + "value": 0.00303 }, { "year": 2047, - "value": 0.00966 + "value": 0.00268 }, { "year": 2048, - "value": 0.00817 + "value": 0.00227 }, { "year": 2049, - "value": 0.00641 + "value": 0.00178 }, { "year": 2050, - "value": 0.00434 + "value": 0.00121 } ] }, @@ -988,7 +988,7 @@ "sector": "Gas Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -996,131 +996,131 @@ "projections": [ { "year": 2019, - "value": 0.0333 + "value": 0.00924 }, { "year": 2020, - "value": 0.032 + "value": 0.0089 }, { "year": 2021, - "value": 0.0308 + "value": 0.00857 }, { "year": 2022, - "value": 0.0297 + "value": 0.00825 }, { "year": 2023, - "value": 0.0286 + "value": 0.00795 }, { "year": 2024, - "value": 0.0276 + "value": 0.00765 }, { "year": 2025, - "value": 0.0265 + "value": 0.00737 }, { "year": 2026, - "value": 0.0255 + "value": 0.0071 }, { "year": 2027, - "value": 0.0246 + "value": 0.00683 }, { "year": 2028, - "value": 0.0237 + "value": 0.00658 }, { "year": 2029, - "value": 0.0228 + "value": 0.00633 }, { "year": 2030, - "value": 0.022 + "value": 0.0061 }, { "year": 2031, - "value": 0.0216 + "value": 0.00601 }, { "year": 2032, - "value": 0.0213 + "value": 0.00591 }, { "year": 2033, - "value": 0.021 + "value": 0.00583 }, { "year": 2034, - "value": 0.0207 + "value": 0.00574 }, { "year": 2035, - "value": 0.0203 + "value": 0.00565 }, { "year": 2036, - "value": 0.0196 + "value": 0.00543 }, { "year": 2037, - "value": 0.0188 + "value": 0.00523 }, { "year": 2038, - "value": 0.0181 + "value": 0.00503 }, { "year": 2039, - "value": 0.0174 + "value": 0.00483 }, { "year": 2040, - "value": 0.0167 + "value": 0.00465 }, { "year": 2041, - "value": 0.0161 + "value": 0.00448 }, { "year": 2042, - "value": 0.0152 + "value": 0.00423 }, { "year": 2043, - "value": 0.014 + "value": 0.00389 }, { "year": 2044, - "value": 0.0124 + "value": 0.00344 }, { "year": 2045, - "value": 0.0103 + "value": 0.00286 }, { "year": 2046, - "value": 0.00907 + "value": 0.00252 }, { "year": 2047, - "value": 0.0077 + "value": 0.00214 }, { "year": 2048, - "value": 0.00614 + "value": 0.00171 }, { "year": 2049, - "value": 0.00439 + "value": 0.00122 }, { "year": 2050, - "value": 0.00242 + "value": 0.000672 } ] }, @@ -1128,7 +1128,7 @@ "sector": "Gas Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -1136,131 +1136,131 @@ "projections": [ { "year": 2019, - "value": 0.0241 + "value": 0.00669 }, { "year": 2020, - "value": 0.024 + "value": 0.00665 }, { "year": 2021, - "value": 0.0238 + "value": 0.00662 }, { "year": 2022, - "value": 0.0237 + "value": 0.00658 }, { "year": 2023, - "value": 0.0235 + "value": 0.00654 }, { "year": 2024, - "value": 0.0234 + "value": 0.0065 }, { "year": 2025, - "value": 0.0233 + "value": 0.00646 }, { "year": 2026, - "value": 0.023 + "value": 0.00639 }, { "year": 2027, - "value": 0.0227 + "value": 0.00631 }, { "year": 2028, - "value": 0.0225 + "value": 0.00624 }, { "year": 2029, - "value": 0.0222 + "value": 0.00616 }, { "year": 2030, - "value": 0.0219 + "value": 0.00609 }, { "year": 2031, - "value": 0.0214 + "value": 0.00594 }, { "year": 2032, - "value": 0.0208 + "value": 0.00579 }, { "year": 2033, - "value": 0.0203 + "value": 0.00564 }, { "year": 2034, - "value": 0.0198 + "value": 0.0055 }, { "year": 2035, - "value": 0.0193 + "value": 0.00536 }, { "year": 2036, - "value": 0.0186 + "value": 0.00516 }, { "year": 2037, - "value": 0.0179 + "value": 0.00496 }, { "year": 2038, - "value": 0.0172 + "value": 0.00477 }, { "year": 2039, - "value": 0.0165 + "value": 0.00459 }, { "year": 2040, - "value": 0.0159 + "value": 0.00442 }, { "year": 2041, - "value": 0.0153 + "value": 0.00426 }, { "year": 2042, - "value": 0.0148 + "value": 0.00411 }, { "year": 2043, - "value": 0.0143 + "value": 0.00396 }, { "year": 2044, - "value": 0.0137 + "value": 0.00382 }, { "year": 2045, - "value": 0.0133 + "value": 0.00368 }, { "year": 2046, - "value": 0.0128 + "value": 0.00355 }, { "year": 2047, - "value": 0.0124 + "value": 0.00343 }, { "year": 2048, - "value": 0.0119 + "value": 0.00331 }, { "year": 2049, - "value": 0.0115 + "value": 0.0032 }, { "year": 2050, - "value": 0.0111 + "value": 0.00309 } ] }, @@ -1268,7 +1268,7 @@ "sector": "Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -1276,131 +1276,131 @@ "projections": [ { "year": 2019, - "value": 0.0381 + "value": 0.0106 }, { "year": 2020, - "value": 0.035 + "value": 0.00972 }, { "year": 2021, - "value": 0.0321 + "value": 0.00893 }, { "year": 2022, - "value": 0.0295 + "value": 0.0082 }, { "year": 2023, - "value": 0.0271 + "value": 0.00754 }, { "year": 2024, - "value": 0.0249 + "value": 0.00693 }, { "year": 2025, - "value": 0.0229 + "value": 0.00636 }, { "year": 2026, - "value": 0.0211 + "value": 0.00585 }, { "year": 2027, - "value": 0.0194 + "value": 0.00538 }, { "year": 2028, - "value": 0.0178 + "value": 0.00495 }, { "year": 2029, - "value": 0.0164 + "value": 0.00455 }, { "year": 2030, - "value": 0.0151 + "value": 0.00418 }, { "year": 2031, - "value": 0.0135 + "value": 0.00376 }, { "year": 2032, - "value": 0.0122 + "value": 0.00338 }, { "year": 2033, - "value": 0.0109 + "value": 0.00303 }, { "year": 2034, - "value": 0.0098 + "value": 0.00272 }, { "year": 2035, - "value": 0.00881 + "value": 0.00245 }, { "year": 2036, - "value": 0.00792 + "value": 0.0022 }, { "year": 2037, - "value": 0.00712 + "value": 0.00198 }, { "year": 2038, - "value": 0.0064 + "value": 0.00178 }, { "year": 2039, - "value": 0.00575 + "value": 0.0016 }, { "year": 2040, - "value": 0.00517 + "value": 0.00144 }, { "year": 2041, - "value": 0.00463 + "value": 0.00129 }, { "year": 2042, - "value": 0.00409 + "value": 0.00114 }, { "year": 2043, - "value": 0.00356 + "value": 0.000988 }, { "year": 2044, - "value": 0.00302 + "value": 0.000838 }, { "year": 2045, - "value": 0.00248 + "value": 0.000688 }, { "year": 2046, - "value": 0.0021 + "value": 0.000584 }, { "year": 2047, - "value": 0.00172 + "value": 0.000479 }, { "year": 2048, - "value": 0.00135 + "value": 0.000374 }, { "year": 2049, - "value": 0.000971 + "value": 0.00027 }, { "year": 2050, - "value": 0.000594 + "value": 0.000165 } ] }, @@ -1408,7 +1408,7 @@ "sector": "Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -1416,131 +1416,131 @@ "projections": [ { "year": 2019, - "value": 0.0285 + "value": 0.00793 }, { "year": 2020, - "value": 0.0265 + "value": 0.00735 }, { "year": 2021, - "value": 0.0245 + "value": 0.00682 }, { "year": 2022, - "value": 0.0228 + "value": 0.00632 }, { "year": 2023, - "value": 0.0211 + "value": 0.00586 }, { "year": 2024, - "value": 0.0196 + "value": 0.00544 }, { "year": 2025, - "value": 0.0181 + "value": 0.00504 }, { "year": 2026, - "value": 0.0165 + "value": 0.00458 }, { "year": 2027, - "value": 0.015 + "value": 0.00416 }, { "year": 2028, - "value": 0.0136 + "value": 0.00378 }, { "year": 2029, - "value": 0.0124 + "value": 0.00343 }, { "year": 2030, - "value": 0.0112 + "value": 0.00312 }, { "year": 2031, - "value": 0.0105 + "value": 0.00291 }, { "year": 2032, - "value": 0.00975 + "value": 0.00271 }, { "year": 2033, - "value": 0.00908 + "value": 0.00252 }, { "year": 2034, - "value": 0.00846 + "value": 0.00235 }, { "year": 2035, - "value": 0.00788 + "value": 0.00219 }, { "year": 2036, - "value": 0.00708 + "value": 0.00197 }, { "year": 2037, - "value": 0.00635 + "value": 0.00176 }, { "year": 2038, - "value": 0.0057 + "value": 0.00158 }, { "year": 2039, - "value": 0.00512 + "value": 0.00142 }, { "year": 2040, - "value": 0.00459 + "value": 0.00128 }, { "year": 2041, - "value": 0.00408 + "value": 0.00113 }, { "year": 2042, - "value": 0.00355 + "value": 0.000985 }, { "year": 2043, - "value": 0.00299 + "value": 0.000832 }, { "year": 2044, - "value": 0.00242 + "value": 0.000673 }, { "year": 2045, - "value": 0.00183 + "value": 0.000509 }, { "year": 2046, - "value": 0.00154 + "value": 0.000429 }, { "year": 2047, - "value": 0.00125 + "value": 0.000347 }, { "year": 2048, - "value": 0.000948 + "value": 0.000263 }, { "year": 2049, - "value": 0.000643 + "value": 0.000178 }, { "year": 2050, - "value": 0.000331 + "value": 0 } ] }, @@ -1548,7 +1548,7 @@ "sector": "Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -1556,131 +1556,131 @@ "projections": [ { "year": 2019, - "value": 0.0188 + "value": 0.00523 }, { "year": 2020, - "value": 0.0182 + "value": 0.00505 }, { "year": 2021, - "value": 0.0176 + "value": 0.00488 }, { "year": 2022, - "value": 0.017 + "value": 0.00471 }, { "year": 2023, - "value": 0.0164 + "value": 0.00455 }, { "year": 2024, - "value": 0.0158 + "value": 0.00439 }, { "year": 2025, - "value": 0.0153 + "value": 0.00424 }, { "year": 2026, - "value": 0.0139 + "value": 0.00386 }, { "year": 2027, - "value": 0.0125 + "value": 0.00347 }, { "year": 2028, - "value": 0.0111 + "value": 0.00307 }, { "year": 2029, - "value": 0.00955 + "value": 0.00265 }, { "year": 2030, - "value": 0.00799 + "value": 0.00222 }, { "year": 2031, - "value": 0.00748 + "value": 0.00208 }, { "year": 2032, - "value": 0.00702 + "value": 0.00195 }, { "year": 2033, - "value": 0.00658 + "value": 0.00183 }, { "year": 2034, - "value": 0.00616 + "value": 0.00171 }, { "year": 2035, - "value": 0.00578 + "value": 0.0016 }, { "year": 2036, - "value": 0.00518 + "value": 0.00144 }, { "year": 2037, - "value": 0.00465 + "value": 0.00129 }, { "year": 2038, - "value": 0.00418 + "value": 0.00116 }, { "year": 2039, - "value": 0.00375 + "value": 0.00104 }, { "year": 2040, - "value": 0.00336 + "value": 0.000934 }, { "year": 2041, - "value": 0.00305 + "value": 0.000847 }, { "year": 2042, - "value": 0.00276 + "value": 0.000768 }, { "year": 2043, - "value": 0.00251 + "value": 0.000696 }, { "year": 2044, - "value": 0.00227 + "value": 0.000631 }, { "year": 2045, - "value": 0.00206 + "value": 0.000572 }, { "year": 2046, - "value": 0.00193 + "value": 0.000537 }, { "year": 2047, - "value": 0.00181 + "value": 0.000503 }, { "year": 2048, - "value": 0.0017 + "value": 0.000472 }, { "year": 2049, - "value": 0.0016 + "value": 0.000443 }, { "year": 2050, - "value": 0.0015 + "value": 0.000416 } ] }, @@ -5892,7 +5892,7 @@ "sector": "Gas Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -5900,131 +5900,131 @@ "projections": [ { "year": 2019, - "value": 0.238 + "value": 0.0662 }, { "year": 2020, - "value": 0.237 + "value": 0.0659 }, { "year": 2021, - "value": 0.236 + "value": 0.0655 }, { "year": 2022, - "value": 0.235 + "value": 0.0651 }, { "year": 2023, - "value": 0.233 + "value": 0.0648 }, { "year": 2024, - "value": 0.232 + "value": 0.0644 }, { "year": 2025, - "value": 0.231 + "value": 0.0641 }, { "year": 2026, - "value": 0.229 + "value": 0.0636 }, { "year": 2027, - "value": 0.227 + "value": 0.0631 }, { "year": 2028, - "value": 0.225 + "value": 0.0626 }, { "year": 2029, - "value": 0.223 + "value": 0.0621 }, { "year": 2030, - "value": 0.222 + "value": 0.0616 }, { "year": 2031, - "value": 0.217 + "value": 0.0602 }, { "year": 2032, - "value": 0.212 + "value": 0.0589 }, { "year": 2033, - "value": 0.208 + "value": 0.0577 }, { "year": 2034, - "value": 0.203 + "value": 0.0564 }, { "year": 2035, - "value": 0.199 + "value": 0.0552 }, { "year": 2036, - "value": 0.19 + "value": 0.0529 }, { "year": 2037, - "value": 0.183 + "value": 0.0507 }, { "year": 2038, - "value": 0.175 + "value": 0.0486 }, { "year": 2039, - "value": 0.168 + "value": 0.0466 }, { "year": 2040, - "value": 0.161 + "value": 0.0447 }, { "year": 2041, - "value": 0.152 + "value": 0.0423 }, { "year": 2042, - "value": 0.142 + "value": 0.0394 }, { "year": 2043, - "value": 0.129 + "value": 0.0358 }, { "year": 2044, - "value": 0.114 + "value": 0.0317 }, { "year": 2045, - "value": 0.0964 + "value": 0.0268 }, { "year": 2046, - "value": 0.0838 + "value": 0.0233 }, { "year": 2047, - "value": 0.0688 + "value": 0.0191 }, { "year": 2048, - "value": 0.0511 + "value": 0.0142 }, { "year": 2049, - "value": 0.0304 + "value": 0.00844 }, { "year": 2050, - "value": 0.00634 + "value": 0.00176 } ] }, @@ -6032,7 +6032,7 @@ "sector": "Gas Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6040,131 +6040,131 @@ "projections": [ { "year": 2019, - "value": 0.238 + "value": 0.066 }, { "year": 2020, - "value": 0.237 + "value": 0.0657 }, { "year": 2021, - "value": 0.236 + "value": 0.0655 }, { "year": 2022, - "value": 0.235 + "value": 0.0652 }, { "year": 2023, - "value": 0.234 + "value": 0.0649 }, { "year": 2024, - "value": 0.233 + "value": 0.0646 }, { "year": 2025, - "value": 0.232 + "value": 0.0644 }, { "year": 2026, - "value": 0.23 + "value": 0.0639 }, { "year": 2027, - "value": 0.228 + "value": 0.0634 }, { "year": 2028, - "value": 0.226 + "value": 0.0629 }, { "year": 2029, - "value": 0.225 + "value": 0.0624 }, { "year": 2030, - "value": 0.223 + "value": 0.0619 }, { "year": 2031, - "value": 0.22 + "value": 0.061 }, { "year": 2032, - "value": 0.217 + "value": 0.0602 }, { "year": 2033, - "value": 0.213 + "value": 0.0593 }, { "year": 2034, - "value": 0.21 + "value": 0.0584 }, { "year": 2035, - "value": 0.207 + "value": 0.0576 }, { "year": 2036, - "value": 0.199 + "value": 0.0552 }, { "year": 2037, - "value": 0.191 + "value": 0.053 }, { "year": 2038, - "value": 0.183 + "value": 0.0508 }, { "year": 2039, - "value": 0.175 + "value": 0.0487 }, { "year": 2040, - "value": 0.168 + "value": 0.0467 }, { "year": 2041, - "value": 0.16 + "value": 0.0445 }, { "year": 2042, - "value": 0.149 + "value": 0.0414 }, { "year": 2043, - "value": 0.134 + "value": 0.0373 }, { "year": 2044, - "value": 0.115 + "value": 0.032 }, { "year": 2045, - "value": 0.091 + "value": 0.0253 }, { "year": 2046, - "value": 0.0774 + "value": 0.0215 }, { "year": 2047, - "value": 0.062 + "value": 0.0172 }, { "year": 2048, - "value": 0.0447 + "value": 0.0124 }, { "year": 2049, - "value": 0.0253 + "value": 0.00702 }, { "year": 2050, - "value": 0.00354 + "value": 0.000982 } ] }, @@ -6172,7 +6172,7 @@ "sector": "Gas Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6180,131 +6180,131 @@ "projections": [ { "year": 2019, - "value": 0.229 + "value": 0.0636 }, { "year": 2020, - "value": 0.229 + "value": 0.0637 }, { "year": 2021, - "value": 0.229 + "value": 0.0637 }, { "year": 2022, - "value": 0.229 + "value": 0.0637 }, { "year": 2023, - "value": 0.229 + "value": 0.0637 }, { "year": 2024, - "value": 0.229 + "value": 0.0637 }, { "year": 2025, - "value": 0.23 + "value": 0.0638 }, { "year": 2026, - "value": 0.228 + "value": 0.0632 }, { "year": 2027, - "value": 0.226 + "value": 0.0627 }, { "year": 2028, - "value": 0.224 + "value": 0.0622 }, { "year": 2029, - "value": 0.222 + "value": 0.0617 }, { "year": 2030, - "value": 0.22 + "value": 0.0611 }, { "year": 2031, - "value": 0.215 + "value": 0.0597 }, { "year": 2032, - "value": 0.21 + "value": 0.0583 }, { "year": 2033, - "value": 0.205 + "value": 0.057 }, { "year": 2034, - "value": 0.2 + "value": 0.0556 }, { "year": 2035, - "value": 0.196 + "value": 0.0543 }, { "year": 2036, - "value": 0.186 + "value": 0.0518 }, { "year": 2037, - "value": 0.178 + "value": 0.0494 }, { "year": 2038, - "value": 0.17 + "value": 0.0471 }, { "year": 2039, - "value": 0.162 + "value": 0.0449 }, { "year": 2040, - "value": 0.154 + "value": 0.0428 }, { "year": 2041, - "value": 0.146 + "value": 0.0407 }, { "year": 2042, - "value": 0.139 + "value": 0.0387 }, { "year": 2043, - "value": 0.132 + "value": 0.0368 }, { "year": 2044, - "value": 0.126 + "value": 0.035 }, { "year": 2045, - "value": 0.12 + "value": 0.0332 }, { "year": 2046, - "value": 0.114 + "value": 0.0316 }, { "year": 2047, - "value": 0.108 + "value": 0.0301 }, { "year": 2048, - "value": 0.103 + "value": 0.0287 }, { "year": 2049, - "value": 0.0982 + "value": 0.0273 }, { "year": 2050, - "value": 0.0935 + "value": 0.026 } ] }, @@ -6312,7 +6312,7 @@ "sector": "Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6320,131 +6320,131 @@ "projections": [ { "year": 2019, - "value": 0.381 + "value": 0.106 }, { "year": 2020, - "value": 0.36 + "value": 0.0999 }, { "year": 2021, - "value": 0.339 + "value": 0.0942 }, { "year": 2022, - "value": 0.32 + "value": 0.0888 }, { "year": 2023, - "value": 0.302 + "value": 0.0838 }, { "year": 2024, - "value": 0.284 + "value": 0.079 }, { "year": 2025, - "value": 0.268 + "value": 0.0745 }, { "year": 2026, - "value": 0.247 + "value": 0.0686 }, { "year": 2027, - "value": 0.228 + "value": 0.0632 }, { "year": 2028, - "value": 0.21 + "value": 0.0582 }, { "year": 2029, - "value": 0.193 + "value": 0.0537 }, { "year": 2030, - "value": 0.178 + "value": 0.0494 }, { "year": 2031, - "value": 0.159 + "value": 0.0443 }, { "year": 2032, - "value": 0.143 + "value": 0.0396 }, { "year": 2033, - "value": 0.128 + "value": 0.0355 }, { "year": 2034, - "value": 0.114 + "value": 0.0318 }, { "year": 2035, - "value": 0.102 + "value": 0.0285 }, { "year": 2036, - "value": 0.0922 + "value": 0.0256 }, { "year": 2037, - "value": 0.0831 + "value": 0.0231 }, { "year": 2038, - "value": 0.0748 + "value": 0.0208 }, { "year": 2039, - "value": 0.0674 + "value": 0.0187 }, { "year": 2040, - "value": 0.0607 + "value": 0.0168 }, { "year": 2041, - "value": 0.0535 + "value": 0.0149 }, { "year": 2042, - "value": 0.0464 + "value": 0.0129 }, { "year": 2043, - "value": 0.0392 + "value": 0.0109 }, { "year": 2044, - "value": 0.0321 + "value": 0.00891 }, { "year": 2045, - "value": 0.0249 + "value": 0.00692 }, { "year": 2046, - "value": 0.0201 + "value": 0.00559 }, { "year": 2047, - "value": 0.0153 + "value": 0.00425 }, { "year": 2048, - "value": 0.0105 + "value": 0.00292 }, { "year": 2049, - "value": 0.00568 + "value": 0.00158 }, { "year": 2050, - "value": 0.000868 + "value": 0.000241 } ] }, @@ -6452,7 +6452,7 @@ "sector": "Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6460,131 +6460,131 @@ "projections": [ { "year": 2019, - "value": 0.262 + "value": 0.0727 }, { "year": 2020, - "value": 0.251 + "value": 0.0698 }, { "year": 2021, - "value": 0.241 + "value": 0.067 }, { "year": 2022, - "value": 0.231 + "value": 0.0643 }, { "year": 2023, - "value": 0.222 + "value": 0.0617 }, { "year": 2024, - "value": 0.213 + "value": 0.0592 }, { "year": 2025, - "value": 0.205 + "value": 0.0569 }, { "year": 2026, - "value": 0.19 + "value": 0.0529 }, { "year": 2027, - "value": 0.177 + "value": 0.0492 }, { "year": 2028, - "value": 0.165 + "value": 0.0458 }, { "year": 2029, - "value": 0.153 + "value": 0.0426 }, { "year": 2030, - "value": 0.142 + "value": 0.0396 }, { "year": 2031, - "value": 0.133 + "value": 0.037 }, { "year": 2032, - "value": 0.125 + "value": 0.0346 }, { "year": 2033, - "value": 0.116 + "value": 0.0323 }, { "year": 2034, - "value": 0.109 + "value": 0.0302 }, { "year": 2035, - "value": 0.102 + "value": 0.0283 }, { "year": 2036, - "value": 0.0908 + "value": 0.0252 }, { "year": 2037, - "value": 0.0811 + "value": 0.0225 }, { "year": 2038, - "value": 0.0724 + "value": 0.0201 }, { "year": 2039, - "value": 0.0646 + "value": 0.0179 }, { "year": 2040, - "value": 0.0577 + "value": 0.016 }, { "year": 2041, - "value": 0.0509 + "value": 0.0141 }, { "year": 2042, - "value": 0.0438 + "value": 0.0122 }, { "year": 2043, - "value": 0.0365 + "value": 0.0101 }, { "year": 2044, - "value": 0.029 + "value": 0.00805 }, { "year": 2045, - "value": 0.0212 + "value": 0.00588 }, { "year": 2046, - "value": 0.0172 + "value": 0.00477 }, { "year": 2047, - "value": 0.0131 + "value": 0.00365 }, { "year": 2048, - "value": 0.00899 + "value": 0.0025 }, { "year": 2049, - "value": 0.00478 + "value": 0.00133 }, { "year": 2050, - "value": 0.000483 + "value": 0.000134 } ] }, @@ -6592,7 +6592,7 @@ "sector": "Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -6600,131 +6600,131 @@ "projections": [ { "year": 2019, - "value": 0.289 + "value": 0.0803 }, { "year": 2020, - "value": 0.275 + "value": 0.0763 }, { "year": 2021, - "value": 0.261 + "value": 0.0725 }, { "year": 2022, - "value": 0.248 + "value": 0.0688 }, { "year": 2023, - "value": 0.235 + "value": 0.0654 }, { "year": 2024, - "value": 0.223 + "value": 0.0621 }, { "year": 2025, - "value": 0.212 + "value": 0.059 }, { "year": 2026, - "value": 0.19 + "value": 0.0529 }, { "year": 2027, - "value": 0.167 + "value": 0.0465 }, { "year": 2028, - "value": 0.144 + "value": 0.04 }, { "year": 2029, - "value": 0.119 + "value": 0.0331 }, { "year": 2030, - "value": 0.0939 + "value": 0.0261 }, { "year": 2031, - "value": 0.0898 + "value": 0.0249 }, { "year": 2032, - "value": 0.0859 + "value": 0.0239 }, { "year": 2033, - "value": 0.0821 + "value": 0.0228 }, { "year": 2034, - "value": 0.0786 + "value": 0.0218 }, { "year": 2035, - "value": 0.0751 + "value": 0.0209 }, { "year": 2036, - "value": 0.0681 + "value": 0.0189 }, { "year": 2037, - "value": 0.0609 + "value": 0.0169 }, { "year": 2038, - "value": 0.0535 + "value": 0.0149 }, { "year": 2039, - "value": 0.046 + "value": 0.0128 }, { "year": 2040, - "value": 0.0383 + "value": 0.0106 }, { "year": 2041, - "value": 0.0348 + "value": 0.00967 }, { "year": 2042, - "value": 0.0316 + "value": 0.00879 }, { "year": 2043, - "value": 0.0288 + "value": 0.00799 }, { "year": 2044, - "value": 0.0261 + "value": 0.00726 }, { "year": 2045, - "value": 0.0238 + "value": 0.0066 }, { "year": 2046, - "value": 0.0222 + "value": 0.00617 }, { "year": 2047, - "value": 0.0208 + "value": 0.00577 }, { "year": 2048, - "value": 0.0194 + "value": 0.00539 }, { "year": 2049, - "value": 0.0182 + "value": 0.00504 }, { "year": 2050, - "value": 0.017 + "value": 0.00472 } ] }, @@ -10936,7 +10936,7 @@ "sector": "Gas Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -10944,131 +10944,131 @@ "projections": [ { "year": 2019, - "value": 0.199 + "value": 0.0553 }, { "year": 2020, - "value": 0.199 + "value": 0.0554 }, { "year": 2021, - "value": 0.2 + "value": 0.0554 }, { "year": 2022, - "value": 0.2 + "value": 0.0555 }, { "year": 2023, - "value": 0.2 + "value": 0.0556 }, { "year": 2024, - "value": 0.2 + "value": 0.0556 }, { "year": 2025, - "value": 0.201 + "value": 0.0557 }, { "year": 2026, - "value": 0.2 + "value": 0.0554 }, { "year": 2027, - "value": 0.199 + "value": 0.0552 }, { "year": 2028, - "value": 0.198 + "value": 0.0549 }, { "year": 2029, - "value": 0.197 + "value": 0.0547 }, { "year": 2030, - "value": 0.196 + "value": 0.0545 }, { "year": 2031, - "value": 0.192 + "value": 0.0534 }, { "year": 2032, - "value": 0.188 + "value": 0.0523 }, { "year": 2033, - "value": 0.185 + "value": 0.0513 }, { "year": 2034, - "value": 0.181 + "value": 0.0502 }, { "year": 2035, - "value": 0.177 + "value": 0.0492 }, { "year": 2036, - "value": 0.17 + "value": 0.0472 }, { "year": 2037, - "value": 0.163 + "value": 0.0453 }, { "year": 2038, - "value": 0.156 + "value": 0.0434 }, { "year": 2039, - "value": 0.15 + "value": 0.0416 }, { "year": 2040, - "value": 0.144 + "value": 0.0399 }, { "year": 2041, - "value": 0.136 + "value": 0.0377 }, { "year": 2042, - "value": 0.126 + "value": 0.035 }, { "year": 2043, - "value": 0.114 + "value": 0.0318 }, { "year": 2044, - "value": 0.101 + "value": 0.0279 }, { "year": 2045, - "value": 0.0845 + "value": 0.0235 }, { "year": 2046, - "value": 0.0729 + "value": 0.0203 }, { "year": 2047, - "value": 0.0591 + "value": 0.0164 }, { "year": 2048, - "value": 0.0429 + "value": 0.0119 }, { "year": 2049, - "value": 0.024 + "value": 0.00666 }, { "year": 2050, - "value": 0.002 + "value": 0.000556 } ] }, @@ -11076,7 +11076,7 @@ "sector": "Gas Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -11084,131 +11084,131 @@ "projections": [ { "year": 2019, - "value": 0.204 + "value": 0.0568 }, { "year": 2020, - "value": 0.205 + "value": 0.0568 }, { "year": 2021, - "value": 0.205 + "value": 0.0569 }, { "year": 2022, - "value": 0.205 + "value": 0.0569 }, { "year": 2023, - "value": 0.205 + "value": 0.0569 }, { "year": 2024, - "value": 0.205 + "value": 0.057 }, { "year": 2025, - "value": 0.205 + "value": 0.057 }, { "year": 2026, - "value": 0.204 + "value": 0.0568 }, { "year": 2027, - "value": 0.203 + "value": 0.0565 }, { "year": 2028, - "value": 0.203 + "value": 0.0563 }, { "year": 2029, - "value": 0.202 + "value": 0.056 }, { "year": 2030, - "value": 0.201 + "value": 0.0558 }, { "year": 2031, - "value": 0.198 + "value": 0.055 }, { "year": 2032, - "value": 0.195 + "value": 0.0542 }, { "year": 2033, - "value": 0.192 + "value": 0.0535 }, { "year": 2034, - "value": 0.19 + "value": 0.0527 }, { "year": 2035, - "value": 0.187 + "value": 0.052 }, { "year": 2036, - "value": 0.179 + "value": 0.0498 }, { "year": 2037, - "value": 0.172 + "value": 0.0477 }, { "year": 2038, - "value": 0.165 + "value": 0.0457 }, { "year": 2039, - "value": 0.158 + "value": 0.0438 }, { "year": 2040, - "value": 0.151 + "value": 0.042 }, { "year": 2041, - "value": 0.144 + "value": 0.04 }, { "year": 2042, - "value": 0.134 + "value": 0.0372 }, { "year": 2043, - "value": 0.12 + "value": 0.0335 }, { "year": 2044, - "value": 0.103 + "value": 0.0286 }, { "year": 2045, - "value": 0.0807 + "value": 0.0224 }, { "year": 2046, - "value": 0.0683 + "value": 0.019 }, { "year": 2047, - "value": 0.0543 + "value": 0.0151 }, { "year": 2048, - "value": 0.0386 + "value": 0.0107 }, { "year": 2049, - "value": 0.0209 + "value": 0.0058 }, { "year": 2050, - "value": 0.00112 + "value": 0.00031 } ] }, @@ -11216,7 +11216,7 @@ "sector": "Gas Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -11224,131 +11224,131 @@ "projections": [ { "year": 2019, - "value": 0.205 + "value": 0.0569 }, { "year": 2020, - "value": 0.205 + "value": 0.057 }, { "year": 2021, - "value": 0.205 + "value": 0.0571 }, { "year": 2022, - "value": 0.206 + "value": 0.0571 }, { "year": 2023, - "value": 0.206 + "value": 0.0572 }, { "year": 2024, - "value": 0.206 + "value": 0.0572 }, { "year": 2025, - "value": 0.206 + "value": 0.0573 }, { "year": 2026, - "value": 0.205 + "value": 0.0568 }, { "year": 2027, - "value": 0.203 + "value": 0.0564 }, { "year": 2028, - "value": 0.201 + "value": 0.0559 }, { "year": 2029, - "value": 0.2 + "value": 0.0555 }, { "year": 2030, - "value": 0.198 + "value": 0.0551 }, { "year": 2031, - "value": 0.194 + "value": 0.0538 }, { "year": 2032, - "value": 0.189 + "value": 0.0525 }, { "year": 2033, - "value": 0.185 + "value": 0.0513 }, { "year": 2034, - "value": 0.18 + "value": 0.0501 }, { "year": 2035, - "value": 0.176 + "value": 0.049 }, { "year": 2036, - "value": 0.168 + "value": 0.0466 }, { "year": 2037, - "value": 0.16 + "value": 0.0444 }, { "year": 2038, - "value": 0.152 + "value": 0.0423 }, { "year": 2039, - "value": 0.145 + "value": 0.0403 }, { "year": 2040, - "value": 0.138 + "value": 0.0384 }, { "year": 2041, - "value": 0.131 + "value": 0.0364 }, { "year": 2042, - "value": 0.124 + "value": 0.0346 }, { "year": 2043, - "value": 0.118 + "value": 0.0328 }, { "year": 2044, - "value": 0.112 + "value": 0.0311 }, { "year": 2045, - "value": 0.106 + "value": 0.0295 }, { "year": 2046, - "value": 0.101 + "value": 0.0281 }, { "year": 2047, - "value": 0.096 + "value": 0.0267 }, { "year": 2048, - "value": 0.0913 + "value": 0.0253 }, { "year": 2049, - "value": 0.0867 + "value": 0.0241 }, { "year": 2050, - "value": 0.0824 + "value": 0.0229 } ] }, @@ -11356,7 +11356,7 @@ "sector": "Utilities", "region": "Global", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -11364,131 +11364,131 @@ "projections": [ { "year": 2019, - "value": 0.343 + "value": 0.0954 }, { "year": 2020, - "value": 0.325 + "value": 0.0902 }, { "year": 2021, - "value": 0.307 + "value": 0.0852 }, { "year": 2022, - "value": 0.29 + "value": 0.0806 }, { "year": 2023, - "value": 0.274 + "value": 0.0762 }, { "year": 2024, - "value": 0.259 + "value": 0.072 }, { "year": 2025, - "value": 0.245 + "value": 0.0681 }, { "year": 2026, - "value": 0.226 + "value": 0.0628 }, { "year": 2027, - "value": 0.208 + "value": 0.0578 }, { "year": 2028, - "value": 0.192 + "value": 0.0533 }, { "year": 2029, - "value": 0.177 + "value": 0.0491 }, { "year": 2030, - "value": 0.163 + "value": 0.0453 }, { "year": 2031, - "value": 0.146 + "value": 0.0405 }, { "year": 2032, - "value": 0.131 + "value": 0.0363 }, { "year": 2033, - "value": 0.117 + "value": 0.0325 }, { "year": 2034, - "value": 0.105 + "value": 0.0291 }, { "year": 2035, - "value": 0.0936 + "value": 0.026 }, { "year": 2036, - "value": 0.0843 + "value": 0.0234 }, { "year": 2037, - "value": 0.0759 + "value": 0.0211 }, { "year": 2038, - "value": 0.0684 + "value": 0.019 }, { "year": 2039, - "value": 0.0616 + "value": 0.0171 }, { "year": 2040, - "value": 0.0555 + "value": 0.0154 }, { "year": 2041, - "value": 0.0489 + "value": 0.0136 }, { "year": 2042, - "value": 0.0423 + "value": 0.0117 }, { "year": 2043, - "value": 0.0357 + "value": 0.00991 }, { "year": 2044, - "value": 0.0291 + "value": 0.00807 }, { "year": 2045, - "value": 0.0224 + "value": 0.00623 }, { "year": 2046, - "value": 0.018 + "value": 0.005 }, { "year": 2047, - "value": 0.0136 + "value": 0.00377 }, { "year": 2048, - "value": 0.00915 + "value": 0.00254 }, { "year": 2049, - "value": 0.00471 + "value": 0.00131 }, { "year": 2050, - "value": 0.000273 + "value": 0 } ] }, @@ -11496,7 +11496,7 @@ "sector": "Utilities", "region": "Europe", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -11504,131 +11504,131 @@ "projections": [ { "year": 2019, - "value": 0.233 + "value": 0.0648 }, { "year": 2020, - "value": 0.225 + "value": 0.0624 }, { "year": 2021, - "value": 0.216 + "value": 0.0601 }, { "year": 2022, - "value": 0.209 + "value": 0.0579 }, { "year": 2023, - "value": 0.201 + "value": 0.0558 }, { "year": 2024, - "value": 0.194 + "value": 0.0538 }, { "year": 2025, - "value": 0.187 + "value": 0.0518 }, { "year": 2026, - "value": 0.174 + "value": 0.0483 }, { "year": 2027, - "value": 0.162 + "value": 0.045 }, { "year": 2028, - "value": 0.151 + "value": 0.042 }, { "year": 2029, - "value": 0.141 + "value": 0.0391 }, { "year": 2030, - "value": 0.131 + "value": 0.0365 }, { "year": 2031, - "value": 0.123 + "value": 0.0341 }, { "year": 2032, - "value": 0.115 + "value": 0.0319 }, { "year": 2033, - "value": 0.107 + "value": 0.0298 }, { "year": 2034, - "value": 0.1 + "value": 0.0279 }, { "year": 2035, - "value": 0.0938 + "value": 0.0261 }, { "year": 2036, - "value": 0.0837 + "value": 0.0233 }, { "year": 2037, - "value": 0.0747 + "value": 0.0208 }, { "year": 2038, - "value": 0.0667 + "value": 0.0185 }, { "year": 2039, - "value": 0.0595 + "value": 0.0165 }, { "year": 2040, - "value": 0.0531 + "value": 0.0147 }, { "year": 2041, - "value": 0.0468 + "value": 0.013 }, { "year": 2042, - "value": 0.0403 + "value": 0.0112 }, { "year": 2043, - "value": 0.0335 + "value": 0.00932 }, { "year": 2044, - "value": 0.0266 + "value": 0.00738 }, { "year": 2045, - "value": 0.0193 + "value": 0.00537 }, { "year": 2046, - "value": 0.0156 + "value": 0.00434 }, { "year": 2047, - "value": 0.0119 + "value": 0.0033 }, { "year": 2048, - "value": 0.00804 + "value": 0.00223 }, { "year": 2049, - "value": 0.00413 + "value": 0.00115 }, { "year": 2050, - "value": 0.000152 + "value": 0 } ] }, @@ -11636,7 +11636,7 @@ "sector": "Utilities", "region": "North America", "benchmark_metric": { - "units": "t CO2e/MWh" + "units": "t CO2e/GJ" }, "scenario name": "OECM 1.5 Degrees", "release date": "2022", @@ -11644,131 +11644,131 @@ "projections": [ { "year": 2019, - "value": 0.27 + "value": 0.0751 }, { "year": 2020, - "value": 0.256 + "value": 0.0712 }, { "year": 2021, - "value": 0.243 + "value": 0.0676 }, { "year": 2022, - "value": 0.231 + "value": 0.0641 }, { "year": 2023, - "value": 0.219 + "value": 0.0608 }, { "year": 2024, - "value": 0.208 + "value": 0.0577 }, { "year": 2025, - "value": 0.197 + "value": 0.0547 }, { "year": 2026, - "value": 0.176 + "value": 0.049 }, { "year": 2027, - "value": 0.155 + "value": 0.043 }, { "year": 2028, - "value": 0.133 + "value": 0.0369 }, { "year": 2029, - "value": 0.11 + "value": 0.0305 }, { "year": 2030, - "value": 0.0859 + "value": 0.0239 }, { "year": 2031, - "value": 0.0823 + "value": 0.0229 }, { "year": 2032, - "value": 0.0789 + "value": 0.0219 }, { "year": 2033, - "value": 0.0756 + "value": 0.021 }, { "year": 2034, - "value": 0.0724 + "value": 0.0201 }, { "year": 2035, - "value": 0.0694 + "value": 0.0193 }, { "year": 2036, - "value": 0.0628 + "value": 0.0174 }, { "year": 2037, - "value": 0.0561 + "value": 0.0156 }, { "year": 2038, - "value": 0.0492 + "value": 0.0137 }, { "year": 2039, - "value": 0.0421 + "value": 0.0117 }, { "year": 2040, - "value": 0.0349 + "value": 0.00971 }, { "year": 2041, - "value": 0.0318 + "value": 0.00882 }, { "year": 2042, - "value": 0.0289 + "value": 0.00802 }, { "year": 2043, - "value": 0.0263 + "value": 0.00729 }, { "year": 2044, - "value": 0.0239 + "value": 0.00663 }, { "year": 2045, - "value": 0.0217 + "value": 0.00603 }, { "year": 2046, - "value": 0.0203 + "value": 0.00563 }, { "year": 2047, - "value": 0.019 + "value": 0.00527 }, { "year": 2048, - "value": 0.0177 + "value": 0.00492 }, { "year": 2049, - "value": 0.0166 + "value": 0.0046 }, { "year": 2050, - "value": 0.0155 + "value": 0.0043 } ] }, diff --git a/examples/quick_template_score_calc.ipynb b/examples/quick_template_score_calc.ipynb index 3dc492c1..0c6db3d7 100644 --- a/examples/quick_template_score_calc.ipynb +++ b/examples/quick_template_score_calc.ipynb @@ -155,7 +155,7 @@ "\n", "self_root = os.path.abspath('')\n", "benchmark_prod_json = os.path.join(self_root, \"data\", \"json-units\", \"benchmark_production_OECM.json\")\n", - "benchmark_EI_OECM = os.path.join(self_root, \"data\", \"json-units\", \"benchmark_EI_OECM.json\")\n", + "benchmark_EI_OECM = os.path.join(self_root, \"data\", \"json-units\", \"benchmark_EI_OECM_PC.json\")\n", "benchmark_EI_TPI = os.path.join(self_root, \"data\", \"json-units\", \"benchmark_EI_TPI_2_degrees.json\")\n", "benchmark_EI_TPI_below_2 = os.path.join(self_root, \"data\", \"json-units\", \"benchmark_EI_TPI_below_2_degrees.json\")\n", "\n", @@ -220,7 +220,7 @@ "if not os.path.isdir(\"data\"):\n", " os.mkdir(\"data\")\n", "\n", - "for filename in ['data/20220720 ITR Tool Sample Data.xlsx',\n", + "for filename in ['data/20220927 ITR Tool Sample Data.xlsx',\n", " 'data/OECM_EI_and_production_benchmarks.xlsx',\n", " 'utils.py']:\n", " if not os.path.isfile(filename):\n", @@ -237,7 +237,7 @@ " from utils import collect_company_contributions, plot_grouped_statistics, anonymize, \\\n", " plot_grouped_heatmap, print_grouped_scores, get_contributions_per_group\n", "\n", - "template_data_path = \"data/20220720 ITR Tool Sample Data.xlsx\"" + "template_data_path = \"data/20220927 ITR Tool Sample Data.xlsx\"" ] }, { @@ -276,7 +276,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2022-09-18 22:48:55,157 - ITR.data.template - WARNING - Missing target start year set to 2021 for companies with ID: ['US0185223007', 'US0188021085', 'US0236081024', 'US0236081024', 'US0255371017', 'US05351W1036', 'US0921131092', 'US0921131092', 'US1442851036', 'US18551QAA58', 'US25746U1097', 'US26441C2044', 'US30034W1062', 'US5526901096', 'JP3633400001']\n" + "2022-09-27 08:39:24,284 - ITR.data.template - WARNING - Missing target start year set to 2021 for companies with ID: ['US0185223007', 'US0188021085', 'US0236081024', 'US0236081024', 'US0255371017', 'US05351W1036-E', 'US05351W1036-U', 'US0921131092', 'US0921131092', 'US1442851036', 'US18551QAA58', 'US25746U1097', 'US26441C2044', 'US30034W1062', 'US5526901096', 'JP3633400001']\n" ] } ], @@ -364,13 +364,13 @@ { "data": { "text/html": [ - "1.0 CO2 kilogram/(kilometer passenger)" + "1.0 CO2 kilogram/pkm" ], "text/latex": [ - "$1.0\\ \\frac{\\mathrm{CO2} \\cdot \\mathrm{kilogram}}{\\left(\\mathrm{kilometer} \\cdot \\mathrm{passenger}\\right)}$" + "$1.0\\ \\frac{\\mathrm{CO2} \\cdot \\mathrm{kilogram}}{\\mathrm{pkm}}$" ], "text/plain": [ - "1.0 " + "1.0 " ] }, "execution_count": 11, @@ -428,44 +428,44 @@ " \n", " \n", " \n", - " 68\n", + " 69\n", " Versant Power\n", " NQZVQT2P5IUF2PGA1Q48\n", " CA2908761018\n", " CA2908761018\n", - " 109852535\n", + " 93382240\n", " \n", " \n", - " 69\n", + " 70\n", " Vistra Corp.\n", " 549300KP43CPCUJOOG15\n", " US92840M1027\n", " US92840M1027\n", - " 57337296\n", + " 145262507\n", " \n", " \n", - " 70\n", + " 71\n", " WEC Energy Group\n", " 549300IGLYTZUK3PVP70\n", " US92939U1060\n", " US92939U1060\n", - " 168020900\n", + " 211716750\n", " \n", " \n", - " 71\n", + " 72\n", " WORTHINGTON INDUSTRIES INC\n", " 1WRCIANKYOIK6KYE5E82\n", " US9818111026\n", " US9818111026\n", - " 133300482\n", + " 226939344\n", " \n", " \n", - " 72\n", + " 73\n", " Xcel Energy, Inc.\n", " LGJNMI9GH8XIDG5RCM61\n", " US98389B1008\n", " US98389B1008\n", - " 114252056\n", + " 80944002\n", " \n", " \n", "\n", @@ -473,18 +473,18 @@ ], "text/plain": [ " company_name company_lei company_id \\\n", - "68 Versant Power NQZVQT2P5IUF2PGA1Q48 CA2908761018 \n", - "69 Vistra Corp. 549300KP43CPCUJOOG15 US92840M1027 \n", - "70 WEC Energy Group 549300IGLYTZUK3PVP70 US92939U1060 \n", - "71 WORTHINGTON INDUSTRIES INC 1WRCIANKYOIK6KYE5E82 US9818111026 \n", - "72 Xcel Energy, Inc. LGJNMI9GH8XIDG5RCM61 US98389B1008 \n", + "69 Versant Power NQZVQT2P5IUF2PGA1Q48 CA2908761018 \n", + "70 Vistra Corp. 549300KP43CPCUJOOG15 US92840M1027 \n", + "71 WEC Energy Group 549300IGLYTZUK3PVP70 US92939U1060 \n", + "72 WORTHINGTON INDUSTRIES INC 1WRCIANKYOIK6KYE5E82 US9818111026 \n", + "73 Xcel Energy, Inc. LGJNMI9GH8XIDG5RCM61 US98389B1008 \n", "\n", " company_isin investment_value \n", - "68 CA2908761018 109852535 \n", - "69 US92840M1027 57337296 \n", - "70 US92939U1060 168020900 \n", - "71 US9818111026 133300482 \n", - "72 US98389B1008 114252056 " + "69 CA2908761018 93382240 \n", + "70 US92840M1027 145262507 \n", + "71 US92939U1060 211716750 \n", + "72 US9818111026 226939344 \n", + "73 US98389B1008 80944002 " ] }, "metadata": {}, @@ -579,35 +579,35 @@ " AES Corp.\n", " LONG\n", " S1S2\n", - " 2.72\n", + " 2.79\n", " \n", " \n", " 1\n", " ALLETE, Inc.\n", " LONG\n", " S1S2\n", - " 2.46\n", + " 2.51\n", " \n", " \n", " 2\n", " Alliant Energy\n", " LONG\n", " S1S2\n", - " 2.09\n", + " 2.12\n", " \n", " \n", " 3\n", " Ameren Corp.\n", " LONG\n", " S1S2\n", - " 3.44\n", + " 3.53\n", " \n", " \n", " 4\n", " American Electric Power Co., Inc.\n", " LONG\n", " S1S2\n", - " 2.9\n", + " 2.97\n", " \n", " \n", " ...\n", @@ -617,60 +617,60 @@ " ...\n", " \n", " \n", - " 68\n", + " 69\n", " Versant Power\n", " LONG\n", " S1S2\n", - " 1.89\n", + " 1.92\n", " \n", " \n", - " 69\n", + " 70\n", " Vistra Corp.\n", " LONG\n", " S1S2\n", - " 2.93\n", + " 3.0\n", " \n", " \n", - " 70\n", + " 71\n", " WEC Energy Group\n", " LONG\n", " S1S2\n", - " 2.67\n", + " 2.73\n", " \n", " \n", - " 71\n", + " 72\n", " WORTHINGTON INDUSTRIES INC\n", " LONG\n", " S1S2\n", - " 1.2\n", + " 1.21\n", " \n", " \n", - " 72\n", + " 73\n", " Xcel Energy, Inc.\n", " LONG\n", " S1S2\n", - " 2.04\n", + " 2.08\n", " \n", " \n", "\n", - "

73 rows × 4 columns

\n", + "

74 rows × 4 columns

\n", "" ], "text/plain": [ " company_name time_frame scope temperature_score\n", - "0 AES Corp. LONG S1S2 2.72\n", - "1 ALLETE, Inc. LONG S1S2 2.46\n", - "2 Alliant Energy LONG S1S2 2.09\n", - "3 Ameren Corp. LONG S1S2 3.44\n", - "4 American Electric Power Co., Inc. LONG S1S2 2.9\n", + "0 AES Corp. LONG S1S2 2.79\n", + "1 ALLETE, Inc. LONG S1S2 2.51\n", + "2 Alliant Energy LONG S1S2 2.12\n", + "3 Ameren Corp. LONG S1S2 3.53\n", + "4 American Electric Power Co., Inc. LONG S1S2 2.97\n", ".. ... ... ... ...\n", - "68 Versant Power LONG S1S2 1.89\n", - "69 Vistra Corp. LONG S1S2 2.93\n", - "70 WEC Energy Group LONG S1S2 2.67\n", - "71 WORTHINGTON INDUSTRIES INC LONG S1S2 1.2\n", - "72 Xcel Energy, Inc. LONG S1S2 2.04\n", + "69 Versant Power LONG S1S2 1.92\n", + "70 Vistra Corp. LONG S1S2 3.0\n", + "71 WEC Energy Group LONG S1S2 2.73\n", + "72 WORTHINGTON INDUSTRIES INC LONG S1S2 1.21\n", + "73 Xcel Energy, Inc. LONG S1S2 2.08\n", "\n", - "[73 rows x 4 columns]" + "[74 rows x 4 columns]" ] }, "metadata": {}, @@ -757,18 +757,18 @@ " {'units': 'TWh'}\n", " ...\n", " US0236081024\n", - " 187168320.0\n", + " 224938701.0\n", " S1S2\n", " LONG\n", - " 3.44\n", - " 4.83352297775256\n", - " 11.65502918361902 dimensionless\n", - " 2.0426385683042105\n", - " 2.7344502557881505 dimensionless\n", + " 3.53\n", + " 4.980644132775656\n", + " 12.125276489775484 dimensionless\n", + " 2.076778100723289\n", + " 2.843571361797634 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 12\n", + " 13\n", " CMS Energy Corp.\n", " US1258961002\n", " North America\n", @@ -781,18 +781,18 @@ " {'units': 'TWh'}\n", " ...\n", " US1258961002\n", - " 153460170.0\n", + " 80836672.0\n", " S1S2\n", " LONG\n", - " 3.09\n", - " 4.802821183876191\n", - " 11.556896213807388 dimensionless\n", - " 1.3756675107016707\n", - " 0.6025927192381779 dimensionless\n", + " 3.17\n", + " 4.948700352277477\n", + " 12.023173724708393 dimensionless\n", + " 1.383190991577245\n", + " 0.6266402235831715 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 14\n", + " 15\n", " Cleco Partners LP\n", " US18551QAA58\n", " North America\n", @@ -805,18 +805,18 @@ " {'units': 'TWh'}\n", " ...\n", " US18551QAA58\n", - " 249493580.0\n", + " 131743976.0\n", " S1S2\n", " LONG\n", - " 3.29\n", - " 4.607914786912605\n", - " 10.933911653154635 dimensionless\n", - " 1.9717016224118427\n", - " 2.507712587044207 dimensionless\n", + " 3.37\n", + " 4.745932694577137\n", + " 11.375062004852246 dimensionless\n", + " 2.0030324738595287\n", + " 2.6078562304960946 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 16\n", + " 17\n", " DTE Energy\n", " US2333311072\n", " North America\n", @@ -829,18 +829,18 @@ " {'units': 'TWh'}\n", " ...\n", " US2333311072\n", - " 71511816.0\n", + " 211258140.0\n", " S1S2\n", " LONG\n", - " 4.49\n", - " 7.054815437631328\n", - " 18.755006037931246 dimensionless\n", - " 1.9254249217449306\n", - " 2.3597971236085895 dimensionless\n", + " 4.62\n", + " 7.2916056579060395\n", + " 19.511864989935116 dimensionless\n", + " 1.9548867542267212\n", + " 2.4539667714530498 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 19\n", + " 20\n", " Electricité de France\n", " FR0010242511\n", " Europe\n", @@ -853,18 +853,18 @@ " {'units': 'GWh'}\n", " ...\n", " FR0010242511\n", - " 166314225.0\n", + " 121931257.0\n", " S1S2\n", " LONG\n", - " 3.99\n", - " 4.860667000821442\n", - " 11.741790354875368 dimensionless\n", - " 3.1169021181452763\n", - " 6.1681477436548 dimensionless\n", + " 4.06\n", + " 4.952722181446704\n", + " 12.036028805490991 dimensionless\n", + " 3.1655306261299394\n", + " 6.323580352096504 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 32\n", + " 33\n", " Hawaiian Electric Industries, Inc.\n", " US4198701009\n", " North America\n", @@ -877,18 +877,18 @@ " {'units': 'TWh'}\n", " ...\n", " US4198701009\n", - " 230796219.0\n", + " 143002854.0\n", " S1S2\n", " LONG\n", - " 3.96\n", - " 5.50189813649834\n", - " 13.791374686431059 dimensionless\n", - " 2.424971533213191\n", - " 3.9565113983548907 dimensionless\n", + " 4.08\n", + " 5.675990353819276\n", + " 14.347830324677808 dimensionless\n", + " 2.4748692850361182\n", + " 4.1160009250263725 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 35\n", + " 36\n", " MDU Resources Group\n", " US5526901096\n", " North America\n", @@ -901,18 +901,18 @@ " {'units': 'TWh'}\n", " ...\n", " US5526901096\n", - " 67504800.0\n", + " 208984600.0\n", " S1S2\n", " LONG\n", - " 3.8\n", - " 5.205622958721434\n", - " 12.844382364295285 dimensionless\n", - " 2.3910430154877447\n", - " 3.8480647642881007 dimensionless\n", + " 3.9\n", + " 5.367754118686206\n", + " 13.362606553097287 dimensionless\n", + " 2.439572044121261\n", + " 4.0031794042032 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 36\n", + " 37\n", " National Grid PLC\n", " US6362744095\n", " Europe\n", @@ -925,18 +925,18 @@ " {'units': 'TWh'}\n", " ...\n", " US6362744095\n", - " 98819124.0\n", + " 165156417.0\n", " S1S2\n", " LONG\n", - " 3.07\n", - " 3.9154191941682566\n", - " 8.720469358182614 dimensionless\n", - " 2.2194623616521403\n", - " 3.2996369039841786 dimensionless\n", + " 3.11\n", + " 3.983923262728285\n", + " 8.939430755651617 dimensionless\n", + " 2.2454712047191796\n", + " 3.382769668858145 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 39\n", + " 40\n", " Nisource Inc.\n", " US65473P1057\n", " North America\n", @@ -949,18 +949,18 @@ " {'units': 'TWh'}\n", " ...\n", " US65473P1057\n", - " 278647362.0\n", + " 99393511.0\n", " S1S2\n", " LONG\n", - " 3.34\n", - " 5.16058995938978\n", - " 12.700442176899859 dimensionless\n", - " 1.526104698954301\n", - " 1.0834391516254647 dimensionless\n", + " 3.43\n", + " 5.320902857833406\n", + " 13.212854607480732 dimensionless\n", + " 1.5396373623610988\n", + " 1.1266939677745758 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 42\n", + " 43\n", " OG&E Energy Corp.\n", " US6708371033\n", " North America\n", @@ -973,18 +973,18 @@ " {'units': 'MWh'}\n", " ...\n", " US6708371033\n", - " 148234320.0\n", + " 238870128.0\n", " S1S2\n", " LONG\n", - " 3.08\n", - " 4.5172959707162\n", - " 10.64426429280895 dimensionless\n", - " 1.6450311331688818\n", - " 1.4635669130709312 dimensionless\n", + " 3.16\n", + " 4.651657389072913\n", + " 11.073727309352611 dimensionless\n", + " 1.6633040651366142\n", + " 1.5219731771602634 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", - " 48\n", + " 49\n", " PPL Corp.\n", " US69351T1060\n", " North America\n", @@ -997,14 +997,14 @@ " {'units': 'TWh'}\n", " ...\n", " US69351T1060\n", - " 144537792.0\n", + " 86420274.0\n", " S1S2\n", " LONG\n", - " 3.83\n", - " 5.299773208781175\n", - " 13.145317341713051 dimensionless\n", - " 2.3514256808656664\n", - " 3.721434811714611 dimensionless\n", + " 3.93\n", + " 5.465695969686426\n", + " 13.67566072661571 dimensionless\n", + " 2.397887069222284\n", + " 3.8699405973819325 dimensionless\n", " EScoreResultType.COMPLETE\n", " \n", " \n", @@ -1015,107 +1015,107 @@ "text/plain": [ " company_name company_id region \\\n", "3 Ameren Corp. US0236081024 North America \n", - "12 CMS Energy Corp. US1258961002 North America \n", - "14 Cleco Partners LP US18551QAA58 North America \n", - "16 DTE Energy US2333311072 North America \n", - "19 Electricité de France FR0010242511 Europe \n", - "32 Hawaiian Electric Industries, Inc. US4198701009 North America \n", - "35 MDU Resources Group US5526901096 North America \n", - "36 National Grid PLC US6362744095 Europe \n", - "39 Nisource Inc. US65473P1057 North America \n", - "42 OG&E Energy Corp. US6708371033 North America \n", - "48 PPL Corp. US69351T1060 North America \n", + "13 CMS Energy Corp. US1258961002 North America \n", + "15 Cleco Partners LP US18551QAA58 North America \n", + "17 DTE Energy US2333311072 North America \n", + "20 Electricité de France FR0010242511 Europe \n", + "33 Hawaiian Electric Industries, Inc. US4198701009 North America \n", + "36 MDU Resources Group US5526901096 North America \n", + "37 National Grid PLC US6362744095 Europe \n", + "40 Nisource Inc. US65473P1057 North America \n", + "43 OG&E Energy Corp. US6708371033 North America \n", + "49 PPL Corp. US69351T1060 North America \n", "\n", " sector target_probability \\\n", "3 Electricity Utilities 0.5 \n", - "12 Electricity Utilities 0.5 \n", - "14 Electricity Utilities 0.5 \n", - "16 Electricity Utilities 0.5 \n", - "19 Electricity Utilities 0.5 \n", - "32 Electricity Utilities 0.5 \n", - "35 Electricity Utilities 0.5 \n", + "13 Electricity Utilities 0.5 \n", + "15 Electricity Utilities 0.5 \n", + "17 Electricity Utilities 0.5 \n", + "20 Electricity Utilities 0.5 \n", + "33 Electricity Utilities 0.5 \n", "36 Electricity Utilities 0.5 \n", - "39 Electricity Utilities 0.5 \n", - "42 Electricity Utilities 0.5 \n", - "48 Electricity Utilities 0.5 \n", + "37 Electricity Utilities 0.5 \n", + "40 Electricity Utilities 0.5 \n", + "43 Electricity Utilities 0.5 \n", + "49 Electricity Utilities 0.5 \n", "\n", " target_data \\\n", "3 [{'netzero_year': 2050, 'target_type': 'absolu... \n", - "12 [{'netzero_year': 2050, 'target_type': 'absolu... \n", - "14 [{'netzero_year': 2050, 'target_type': 'absolu... \n", - "16 [{'netzero_year': 2050, 'target_type': 'absolu... \n", - "19 [{'netzero_year': 2050, 'target_type': 'absolu... \n", - "32 [{'netzero_year': 2050, 'target_type': 'intens... \n", - "35 [{'netzero_year': 2050, 'target_type': 'intens... \n", - "36 [{'netzero_year': 2050, 'target_type': 'absolu... \n", - "39 [{'netzero_year': 2050, 'target_type': 'absolu... \n", - "42 [{'netzero_year': 2050, 'target_type': 'absolu... \n", - "48 [{'netzero_year': 2050, 'target_type': 'absolu... \n", + "13 [{'netzero_year': 2050, 'target_type': 'absolu... \n", + "15 [{'netzero_year': 2050, 'target_type': 'absolu... \n", + "17 [{'netzero_year': 2050, 'target_type': 'absolu... \n", + "20 [{'netzero_year': 2050, 'target_type': 'absolu... \n", + "33 [{'netzero_year': 2050, 'target_type': 'intens... \n", + "36 [{'netzero_year': 2050, 'target_type': 'intens... \n", + "37 [{'netzero_year': 2050, 'target_type': 'absolu... \n", + "40 [{'netzero_year': 2050, 'target_type': 'absolu... \n", + "43 [{'netzero_year': 2050, 'target_type': 'absolu... \n", + "49 [{'netzero_year': 2050, 'target_type': 'absolu... \n", "\n", " historic_data country \\\n", "3 {'productions': [{'year': 2016, 'value': 38.50... US \n", - "12 {'productions': [{'year': 2016, 'value': 16.69... US \n", - "14 {'productions': [{'year': 2016, 'value': 13.52... US \n", - "16 {'productions': [{'year': 2016, 'value': 38.33... US \n", - "19 {'productions': [{'year': 2016, 'value': nan g... FR \n", - "32 {'productions': [{'year': 2016, 'value': 4.942... US \n", - "35 {'productions': [{'year': 2016, 'value': 2.187... US \n", - "36 {'productions': [{'year': 2016, 'value': 9.668... GB \n", - "39 {'productions': [{'year': 2016, 'value': 11.78... US \n", - "42 {'productions': [{'year': 2016, 'value': 50505... US \n", - "48 {'productions': [{'year': 2016, 'value': 34.61... US \n", + "13 {'productions': [{'year': 2016, 'value': 16.69... US \n", + "15 {'productions': [{'year': 2016, 'value': 13.52... US \n", + "17 {'productions': [{'year': 2016, 'value': 38.33... US \n", + "20 {'productions': [{'year': 2016, 'value': nan g... FR \n", + "33 {'productions': [{'year': 2016, 'value': 4.942... US \n", + "36 {'productions': [{'year': 2016, 'value': 2.187... US \n", + "37 {'productions': [{'year': 2016, 'value': 9.668... GB \n", + "40 {'productions': [{'year': 2016, 'value': 11.78... US \n", + "43 {'productions': [{'year': 2016, 'value': 50505... US \n", + "49 {'productions': [{'year': 2016, 'value': 34.61... US \n", "\n", " emissions_metric production_metric ... company_isin investment_value \\\n", - "3 {'units': 'Mt CO2'} {'units': 'TWh'} ... US0236081024 187168320.0 \n", - "12 {'units': 'Mt CO2'} {'units': 'TWh'} ... US1258961002 153460170.0 \n", - "14 {'units': 'Mt CO2'} {'units': 'TWh'} ... US18551QAA58 249493580.0 \n", - "16 {'units': 'Mt CO2'} {'units': 'TWh'} ... US2333311072 71511816.0 \n", - "19 {'units': 'Mt CO2'} {'units': 'GWh'} ... FR0010242511 166314225.0 \n", - "32 {'units': 'Mt CO2'} {'units': 'TWh'} ... US4198701009 230796219.0 \n", - "35 {'units': 'Mt CO2'} {'units': 'TWh'} ... US5526901096 67504800.0 \n", - "36 {'units': 'Mt CO2'} {'units': 'TWh'} ... US6362744095 98819124.0 \n", - "39 {'units': 'Mt CO2'} {'units': 'TWh'} ... US65473P1057 278647362.0 \n", - "42 {'units': 't CO2'} {'units': 'MWh'} ... US6708371033 148234320.0 \n", - "48 {'units': 'Mt CO2'} {'units': 'TWh'} ... US69351T1060 144537792.0 \n", + "3 {'units': 'Mt CO2'} {'units': 'TWh'} ... US0236081024 224938701.0 \n", + "13 {'units': 'Mt CO2'} {'units': 'TWh'} ... US1258961002 80836672.0 \n", + "15 {'units': 'Mt CO2'} {'units': 'TWh'} ... US18551QAA58 131743976.0 \n", + "17 {'units': 'Mt CO2'} {'units': 'TWh'} ... US2333311072 211258140.0 \n", + "20 {'units': 'Mt CO2'} {'units': 'GWh'} ... FR0010242511 121931257.0 \n", + "33 {'units': 'Mt CO2'} {'units': 'TWh'} ... US4198701009 143002854.0 \n", + "36 {'units': 'Mt CO2'} {'units': 'TWh'} ... US5526901096 208984600.0 \n", + "37 {'units': 'Mt CO2'} {'units': 'TWh'} ... US6362744095 165156417.0 \n", + "40 {'units': 'Mt CO2'} {'units': 'TWh'} ... US65473P1057 99393511.0 \n", + "43 {'units': 't CO2'} {'units': 'MWh'} ... US6708371033 238870128.0 \n", + "49 {'units': 'Mt CO2'} {'units': 'TWh'} ... US69351T1060 86420274.0 \n", "\n", " scope time_frame temperature_score trajectory_score \\\n", - "3 S1S2 LONG 3.44 4.83352297775256 \n", - "12 S1S2 LONG 3.09 4.802821183876191 \n", - "14 S1S2 LONG 3.29 4.607914786912605 \n", - "16 S1S2 LONG 4.49 7.054815437631328 \n", - "19 S1S2 LONG 3.99 4.860667000821442 \n", - "32 S1S2 LONG 3.96 5.50189813649834 \n", - "35 S1S2 LONG 3.8 5.205622958721434 \n", - "36 S1S2 LONG 3.07 3.9154191941682566 \n", - "39 S1S2 LONG 3.34 5.16058995938978 \n", - "42 S1S2 LONG 3.08 4.5172959707162 \n", - "48 S1S2 LONG 3.83 5.299773208781175 \n", + "3 S1S2 LONG 3.53 4.980644132775656 \n", + "13 S1S2 LONG 3.17 4.948700352277477 \n", + "15 S1S2 LONG 3.37 4.745932694577137 \n", + "17 S1S2 LONG 4.62 7.2916056579060395 \n", + "20 S1S2 LONG 4.06 4.952722181446704 \n", + "33 S1S2 LONG 4.08 5.675990353819276 \n", + "36 S1S2 LONG 3.9 5.367754118686206 \n", + "37 S1S2 LONG 3.11 3.983923262728285 \n", + "40 S1S2 LONG 3.43 5.320902857833406 \n", + "43 S1S2 LONG 3.16 4.651657389072913 \n", + "49 S1S2 LONG 3.93 5.465695969686426 \n", "\n", " trajectory_overshoot_ratio target_score \\\n", - "3 11.65502918361902 dimensionless 2.0426385683042105 \n", - "12 11.556896213807388 dimensionless 1.3756675107016707 \n", - "14 10.933911653154635 dimensionless 1.9717016224118427 \n", - "16 18.755006037931246 dimensionless 1.9254249217449306 \n", - "19 11.741790354875368 dimensionless 3.1169021181452763 \n", - "32 13.791374686431059 dimensionless 2.424971533213191 \n", - "35 12.844382364295285 dimensionless 2.3910430154877447 \n", - "36 8.720469358182614 dimensionless 2.2194623616521403 \n", - "39 12.700442176899859 dimensionless 1.526104698954301 \n", - "42 10.64426429280895 dimensionless 1.6450311331688818 \n", - "48 13.145317341713051 dimensionless 2.3514256808656664 \n", + "3 12.125276489775484 dimensionless 2.076778100723289 \n", + "13 12.023173724708393 dimensionless 1.383190991577245 \n", + "15 11.375062004852246 dimensionless 2.0030324738595287 \n", + "17 19.511864989935116 dimensionless 1.9548867542267212 \n", + "20 12.036028805490991 dimensionless 3.1655306261299394 \n", + "33 14.347830324677808 dimensionless 2.4748692850361182 \n", + "36 13.362606553097287 dimensionless 2.439572044121261 \n", + "37 8.939430755651617 dimensionless 2.2454712047191796 \n", + "40 13.212854607480732 dimensionless 1.5396373623610988 \n", + "43 11.073727309352611 dimensionless 1.6633040651366142 \n", + "49 13.67566072661571 dimensionless 2.397887069222284 \n", "\n", " target_overshoot_ratio score_result_type \n", - "3 2.7344502557881505 dimensionless EScoreResultType.COMPLETE \n", - "12 0.6025927192381779 dimensionless EScoreResultType.COMPLETE \n", - "14 2.507712587044207 dimensionless EScoreResultType.COMPLETE \n", - "16 2.3597971236085895 dimensionless EScoreResultType.COMPLETE \n", - "19 6.1681477436548 dimensionless EScoreResultType.COMPLETE \n", - "32 3.9565113983548907 dimensionless EScoreResultType.COMPLETE \n", - "35 3.8480647642881007 dimensionless EScoreResultType.COMPLETE \n", - "36 3.2996369039841786 dimensionless EScoreResultType.COMPLETE \n", - "39 1.0834391516254647 dimensionless EScoreResultType.COMPLETE \n", - "42 1.4635669130709312 dimensionless EScoreResultType.COMPLETE \n", - "48 3.721434811714611 dimensionless EScoreResultType.COMPLETE \n", + "3 2.843571361797634 dimensionless EScoreResultType.COMPLETE \n", + "13 0.6266402235831715 dimensionless EScoreResultType.COMPLETE \n", + "15 2.6078562304960946 dimensionless EScoreResultType.COMPLETE \n", + "17 2.4539667714530498 dimensionless EScoreResultType.COMPLETE \n", + "20 6.323580352096504 dimensionless EScoreResultType.COMPLETE \n", + "33 4.1160009250263725 dimensionless EScoreResultType.COMPLETE \n", + "36 4.0031794042032 dimensionless EScoreResultType.COMPLETE \n", + "37 3.382769668858145 dimensionless EScoreResultType.COMPLETE \n", + "40 1.1266939677745758 dimensionless EScoreResultType.COMPLETE \n", + "43 1.5219731771602634 dimensionless EScoreResultType.COMPLETE \n", + "49 3.8699405973819325 dimensionless EScoreResultType.COMPLETE \n", "\n", "[11 rows x 40 columns]" ] @@ -1176,13 +1176,13 @@ { "data": { "text/html": [ - "2.268320569873042 delta_degree_Celsius" + "2.206514037265527 delta_degree_Celsius" ], "text/latex": [ - "$2.268320569873042\\ \\mathrm{delta\\_degree\\_Celsius}$" + "$2.206514037265527\\ \\mathrm{delta\\_degree\\_Celsius}$" ], "text/plain": [ - "2.268320569873042 " + "2.206514037265527 " ] }, "execution_count": 18, @@ -1261,9 +1261,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASgAAAEaCAYAAACitcq/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqQElEQVR4nO2dd7hcVdm+7ycJmEACAonUQMBPivzoofmBdDAIUgUignRRRCxgwQII2BCRjogaQZQPpYpIk96ESC+CKIQSBAKhJNSQ5/fHWgOb8ZyZOTnnzN7nzHtf177OzN5rr/3OOnueede711qvbBMEQVBFhpRtQBAEQXeEQAVBUFlCoIIgqCwhUEEQVJYQqCAIKksIVBAElSUEKgjmAEl/kfSZsu0Y7AxIgZI0o7DNlvRa4f2uZds3J0h6TNKmZdsRtIbtCbZ/U7YdZSPpcEm/7a/6h/VXxf2J7ZG115IeA/axfVV5FjVG0jDbswb6NXpCmfa0cu2qtVd/IGmo7bfLtqMRTf8Ptgf0BjwGbJpfDwG+AfwLeB44F1gwHxsHGNgTeAKYDuwPrAncA7wInFSodw/gJuAk4CXgH8AmhePzA78EngaeAo4Chtade1y24yjgg8DV+f004Gzg/bn8WcBs4DVgBvA1YEPgyQaf9XDgj8BvgZeBfRrZ1EW7rQVMzuc+A/y0cGw94ObcJk8AexQ+85nAc8AU4NvAkAaf+X3AT4DH8zVOA0Z0Y0+ftncX9feovYChwLH5f/Uo8AXS/TMsH7+W9MMI6b77dm6TZ3MbzV93330mt8M04FsN7udJuZ2uBF4BrgOWKhxfPh97AXgI2Knu3FOBS4GZ5Huli3b+d677UWDXwrG9gAdJ343L6667YuG6zwCHAh8D3gTeIt23d+eyiwEX57KPAPs2+j80/H6XLTB9LFAHAbcCS5C+HD8Hfl93o5wGDAc2B14HLgQ+ACyeb64NCv/IWcCXgbmAnUlfnJrgXZDrnzeffxvw2bpzDyR5qSOA/wE2y3aNAa4HftbV58jvN6S5QL0FbEv6goxoZFMX7XYLsFt+PRJYJ79eKt+8E/PnXghYNR87E7gIGJXb82Fg7waf+bh8oy6Yz/kT8IMGAtVn7d2NQLXcXqQfrwdI99ICwFV0L1B7kb6Iy+S2PB84q+6++0W+5irAG8AKDQTqFeCjpHvleODGfGxe0g/GnvlzrkYSvA8Xzn0J+N/8GYfX1T0vSRSWy+8XBVbMr7fJn2GFXPe3gZvzsVEkEf8q6bszCli70K6/rbvO9cApueyqpB+0jbv7P3SSQD3Ie391F82NMaxwoyxeOP48sHPh/XnAlwo3/VRAheO3AbsBC+ebbETh2ETgmsK5jzexe1vgzl4K1PWFYw1t6uL61wNHAKPr9n8TuKCL8kNJv5YfLuz7LHBtV58ZEOlX/IOFfesCj3ZjT3+3d4/ai+TtfrZwbFO6F6i/Ap8vlF2ui/tuibrPtUs3dk4Czim8Hwm8DYwlifYNdeV/DhxWOPfMBm0wL8kr3oE6YQD+Qv6xye+HAK+SfrAmUrhXu2jX3xbej832jirs+wEwqav/Q7NtQMagGrAUcIGk2YV9b5NuxhrPFF6/1sX7kYX3Tzm3amYKyX1divQr/7Sk2rEhpF+3GsXXSFqY9Gu4PukXaAjJle4NxWu0YlORvYHvAf+Q9ChwhO1LSDfYv7ooPzrXP6WwbwrJ8+zKnjHAPMDfC/aIJHTd0Wft3Q09aa/FelD/Yvx3uwzjvffdfwqvX+W991m3dtqeIekF3m2HtSW9WCg7jBQiaGqn7ZmSdgYOBn4p6Sbgq7b/kes+XtKxhVNE+v92d090xWLAC7ZfKeybAoxvxcZ6BptAPQHsZfum+gOSxs1BfYtLUuFLsySpy/IE6dd3tLsP8Lnu/ffzvpVsvyBpW1K8pbvyM0lf8Jr9Q0lf+u6u0YpN755o/xOYKGkIsD3wR0kL5XrW6uKUaSSvYClS1wdSezzVjT3TSIK/ou1imUb0ZXs3K9OszqdJ3bsaYxvUO5XULjWWJHU5n6mro1XeuZakkaQu8tRs83W2N2twbsN2sH05cLmkEaSY2y9IP5pPAEfbPrv+HElLAbu0eL2pwIKSRhVEqtF90pABOcygAacBR+cGRdIYSdv0or4PAF+UNJekT5L655fafhq4AjhW0nyShkj6oKQNGtQ1ihRIfEnS4sAhdcefIcUwajwMDJf0cUlzkWIC7+uu8p7aJOnTksbYnk1y+yEF6s8GNpW0k6RhkhaStKrT06BzSe07KrfxV0jBzq7smU26+Y+T9IF8zcUlbdHdZ6Bv27shLdR5LnBQtvn9wNcbVPd74MuSls6C8n3g/1r5oeiGLSWtJ2lu4EjgVttPAJcAy0raLbfRXJLWlLRCK5VKWljSNpLmJYnzDNL/HNJ355uSVsxl58//A/J1F5X0JUnvy///tfOxZ4Bx+YeObOfNwA8kDZe0Mslbn6OhCINNoI4n/eJeIekVUsB87canNORvwIdI3sDRwI62n8/HdgfmJnkT00lPJhZtUNcRwOqkIOafSYHUIj8Avi3pRUkH234J+DxwBunXZybwZBN7e2LTx4D7Jc0gtdsutl+z/TiwJSkg+gJwFymwCykIPZP0FOhG4HfArxrY83VS4PVWSS+TAs3LNSjfl+3dCo3q/AVJwO4B7iQ9GZtFChnU8ytSN+t60pOx10ltNaf8DjiM1P5rAJ8GyB7J5iRvZiqp2/gjGvxw1TGE9KMyNde9AfC5XPcFua5z8v/qPmBC4bqbAVvna/4T2CjX+Yf893lJd+TXE0mxt6mkBxGHeQ6HAem9Xf6ghqQ9SEHQ9cq2pROoentLmgCcZnuppoV7d51JpIcj3+7P6wwUBpsHFQR9gqQRkrbM3dzFSR7NBWXb1WmEQAVB14jULZ9O6uI9CHy3VIs6kOjiBUFQWcKDCoKgsoRABUFQWQbbQM3KMHrUCI8bM1/ZZjRk2qPPlm1CQ0avuHTZJjRGjQbFl8/f73tkmu36wb3/xYckv9qkzFS43PbH+si0lgmB6ifGjZmP246u9tJUv/rUcWWb0JC9zju6bBMaM/eosi1oyNBltp7SvFSad7N/kzLfTVOd2k4IVBB0OKK6QlBVu4IgaCNqXqQUIkgeBAFDm2zNkDRW0jWSHpB0v6SDuim3oaS7cpnrmtUbHlQQdDiiTzyVWaSlW+6QNIq0zM6VtmsrX5AnXZ8CfMz247VJ5I0IgQqCoCUvqRF5dYin8+tXJD1IWkvqgUKxTwHn5wnp2G76GDm6eEHQ4dQ8qEYbMFrS5MK2X7f1pbXXViOtTlFkWWABSddK+ruk3ZvZFh5UEASteFDTbI9vViivh1VbOvvlusPDSMvHbEJan/0WSbfafri7+kKggqDD6aMYFHlhxfOAs23Xr3cGaT2z523PBGZKup601li3AhVdvCAI+uIpnkgpvB60/dNuil0ErJeXsJmHtJjkg43qDQ8qCDqcPvKg/peUgedeSXflfYeS1iPH9mm2H5R0GWmV0tnAGbbva1RpCFQQBH3xFO9GWhjvafsY4JhW6w2BCoIOp69iUP1BCFQQdDjNkhWWSQhUEAThQQVBUF2qOlk4BCoIOpwqd/GaenaSXMzXLulgSYf35CJ5BvNHCu8nSdqxxXO3zTYs35Nr9tC+8ZJO6K/6g6DqtDDVpTS7mvEGsL2kOVpRT9IwYEPgI02KdsdEUhbbiXN4fkMkDbM92fYX+6P+IKg6NQ+qNwM1+4tWBGoWcDrw5foDksZJulrSPZL+KmnJvH+SpNMk/Y2U435/Uu76uyStn0//qKSbJf27O28qz+tZj5TbfZfC/g0lXSfponz+DyXtKuk2SfdK+mAuN0bSeZJuz9v/5v2HSzpL0k3AWbm+S2rXlPTrXM89knbI+0/NkyTvl3REC+0WBAOGgexBAZwM7Cpp/rr9JwK/sb0ycDZQ7CYtAXzE9vbAacBxtle1fUM+vihJfLYCftjNdbcBLsuTCZ+XtEbh2Cok4VuBNIJ1WdtrAWcAB+Yyx+frrgnskI/V+DCwqe16z+w7wEu2V8qf6+q8/1t5suTKwAaSVq43VtJ+tdnez73yWjcfKQiqxUD3oMizks8E6rtB6wK/y6/PIglOjT/YfrtBtRfanp0XtFq4mzITgXPy63N4bzfvdttP234D+BdwRd5/LzAuv94UOCkPvb8YmC97ZQAX2+5KRTYlCTIAtqfnlztJuoOUZXZFksC9B9un2x5ve/yYUSO6+UhBUD00RA23sujJU7yfAXcAv26x/Mwmx98ovP6vFpC0ILAxsJIkk4Tckg7p4vzZhfezefdzDQHWsf16Xd2t2FcsvzRwMLCm7emSJgHDWz0/CKqMBEOHNvFVZjfyNfqPlruXtl8gxZP2Luy+mXdjQ7sCN9Sfl3kF6GmOnh2Bs2wvZXuc7bHAo8D6Tc4rcgXvdveQtGoL51wJHFA4ZwFgPpKgvSRpYWBCD2wIgsojqeFWFj2Nfx3Le/NjHQjsKekeUhyoy4XSgT8B29UFyZsxEbigbt959Oxp3heB8TnY/QDN038BHEVa9e8+SXcDG9m+m9S1+wepS3tTD2wIgoojhgwd0nAri6ZdPNsjC6+fAeYpvJ9C6obVn7NH3fuHScHlGjfUHR9JHbY36mJfMQh/bWH/hoXX19aO2Z4G7NxFPYfXvS+eMwP4TBfn7FG/LwgGBaLUOFMjYiR5EHQ4glK9pEaEQAVBp1NynKkR1ZTNIAjahkhP8RptTetoMXFnLrumpFmtTHcLDyoIOp2+iUE1TdwJIGko8CPeHbfYkBCoIOh41OsYVIuJOyE9+T8PWLOVekOggiBoJQY1WtLkwvvTbZ/eTV3j6CJxp6TFge2AjQiBCoKgFaSWnuL1ReLOnwFftz271aB8CFQQBAzpg3FQLSTuHA+ck8VpNLClpFm2L+yuzhCoIOh0+mCYQSuJO20vXSg/CbikkThBCFQQdDx9NFCzaeLOOak0BCoIOh2BeqlPrSbuLJTfo5VyIVBBEMRUlyAIqokQQyo61SUEKgg6ndaGGZRCCFQQBLHcShAE1UTq/VSX/iIEqp94dfhC3LnsrmWb0ZC9rlmkbBMGNFVdomROqOpnCYEKgk5HMGRYNZOfh0AFQcejNCGvgoRABUGHo/CggiCoMhGDCoKgmkgoPKggCKpKeFBBEFQSSWhYjIMKgqCiqLfLGfQTIVBB0OlUOLNwNWUzCII2IjR0aMOtaQ0t5MWTtKukeyTdK+lmSas0qzc8qCDodNqXF+9RYAPb0yVNAE4H1m5UaQhUEHQ4fbHkbyt58WzfXDjlVmCJZvWGQAVBpyPBkL6L9nSXF6+OvYG/NKsrBCoIglY8qJYSdzbJi1crsxFJoNZrdtEQqCDodCTU3INqmrizhbx4SFoZOAOYYPv5ZhcNgQqCDkeAehmDaiUvnqQlgfOB3Ww/3Eq9IVBB0On0zVO8VvLifRdYCDglT62Z1cwrGxQCJWlh4DhgHWA68Cbw4/z6YNtbNTj3cGCG7Z/04HozbI/sldFBUBnEkBbGOjWilbx4tvcB9ulJvQN+oGZ2LS8Erre9jO01gF1o4RFmEATkcQZqvJXEgBcoYGPgzWJqZdtTbJ9YLCRpQUkX5pGst+ZgXY1VJN0i6Z+S9s3lR0r6q6Q78sjXbdrzcYKgvSh7UI22shgMXbwVgTtaKHcEcKftbSVtDJwJrJqPrUzqHs4L3Cnpz8CzwHa2X5Y0GrhV0sW23eefIAjKJObitQ9JJ0u6W9LtdYfWA84CsH01sJCk+fKxi2y/ZnsacA2wFsnx/b6ke4CrSKNiF25y7f0kTZY0efr06X34qYKgf9HQIQ23shgMAnU/sHrtje0DgE2AMT2oo94rMrBrrmMN26sCzwDDG1Zin257vO3xCyywQA8uHwQloha2khgMAnU1MFzS5wr75umi3A0k0UHShqSBZ7WRrttIGi5pIWBD4HZgfuBZ22/lka9L9Y/5QVA+GqKGW1kM+BiUbUvaFjhO0teA54CZwNfrih4O/Cp32V4FPlM4dg+pazcaONL2VElnA3+SdC8wGfhHv36QICiNcp/UNWLACxS8M5N6l24OX5vLvABs28W5h3dT5zRg3W6OxRioYNCg6qbFGxwCFQRBLxlaTYUKgQqCILK6BEFQUSo8DioEKgiCCJIHQVBRVO5QgkaEQAVBUOpgzEaEQAVBgOIpXhAElURUdiDUYJjqEgRBL0hL/qrh1rSO1hJ3StIJkh7Jyx6t3lVdRcKDCoKgLxyoVhJ3TgA+lLe1gVNpkrgzPKgg6HTUeKJwK0/4bD9t+478+hWglrizyDbAmU7cCrxf0qKN6g0PKgiCVsZBtZQXDxom7lwceKLw/sm87+nuLhoCFQSdTmsjyZvmxYPWEnf2hBCoIAj6JAjVQuLOp4CxhfdL5H3dEjGoIAj64ile08SdwMXA7vlp3jrAS3mppG4JDyoIOp2+Wda3lcSdlwJbAo+QFo3cs1mlIVD9xDyewWpv3li2GQ353kb1i45Wi+9edXTZJjTEI0aUbUKfINTrxAgtJu40cEBP6g2BCoKgsiPJQ6CCoNOpZRauICFQQdDxCIaUlz24ESFQQdDphAcVBEF1EQwNDyoIgqoSQfIgCCqJCA8qCIKqIhhSzUklIVBB0OmIEKggCKpKeFBBEFQV0eupLv1FCFQQBKAQqCAIqogE4UEFQVBZIgYVBEElUQTJgyCoMhUVqGpaFQRB+xApBtVoa1aF9CtJz0q6r5vj80v6k6S7c2LPpqtpQghUEAQprUvjrTmTgI81OH4A8IDtVYANgWMlzd2s0gHbxZP0NnBvYdc5tn9Ylj1BMKDp5XIrtq/P+fC6LQKMyskVRgIvkLIRN2TAChTwmu1V5+REScNsN22cIOgI1NJyKy0n7uyGk0hZXaYCo4Cdbc9udtKg6+JJekzS6Px6vKRr8+vDJZ0l6SbgLEnjJF0t6R5Jf5W0ZC43SdJpkiZLeljSVnn/UEnHSLo9n/PZsj5jEPQ5UuMtJ+4sbD0RJ4AtgLuAxYBVgZMkzdfspIEsUCMk3VXYdm7hnA8Dm9qeCJwI/Mb2ysDZwAmFcuOAtYCPA6dJGg7sTcrjtSawJrCvpKWLlUvaLwvb5Oemz+j1BwyCtjFkaOOt9+wJnO/EI8CjwPLNTuq0Lt7Ftl/Lr9cFts+vzwJ+XCh3bnY//ynp36SG3BxYWdKOucz8wIdIDQ1A/lU5HWD8Cku6h7YFQTn0TV68ZjwObALcIGlhYDng381OGsgC1R2zeNczHF53bGaLddSLi0n/wgNtX94L24KggvR+oKak35Oezo2W9CRwGDAXvJO080hgkqR70wX5uu1pzeodjAL1GLAG8BdghwblbgZ2IXlPuwI3FI59UtJvgKWBZYCHgMuBz0m62vZbkpYFnrLdqugFQXXp5ZK/OWzS6PhUUi+kRwxkgRpRSLEMcJntbwBHAL+UdCRwbYPzDwR+LekQ4Dnem4b5ceA2YD5gf9uvSzqDFJu6Iz8qfQ7Ytm8+ShCUTKxJ3rfY7jJyZ/sGYNku9h9e934KsHE31V9le/+68rNJueYPnRN7g6CyiBCoIAiqSkwWHjDY3qNsG4Kg/YQHFQRBVYnMwkEQVJKIQQVBUF0Ua5IHQVBhwoMKgqCyRAwqCILqEgIVBEEVeXdJlcoRAhUEQXTxgiCoMOFBBUFQWWKYQRAElaTCMahqymYQBO2l+ZrkTU5vnBcvl9kwL899v6TrWjErBCoIgl4LFE3y4kl6P3AK8AnbKwKfbKXS6OIFQdDr5VZayIv3KVLShMdz+WdbqTcEqr+YZ0GGrPbpsq1oyHdOuadsExozX9OsRKXy1GGTyjahj2gpa0Jv8+ItC8yV08CNAo63fWazk0KggqDTEa2klppme3wvrjKMlCtgE2AEcIukW20/3OykIAg6mrbknXoSeD4nGZkp6XpgFaChQEWQPAiCdiTuvAhYT9IwSfMAawMPNjspPKggCOitB9UsL57tByVdBtwDzAbOsN3tkIQaIVBB0PEI1DsvqVlevFzmGOCYntQbAhUEnU4s+RsEQXWJJX+DIKgyIVBBEFSWEKggCKpJdPGCIKgqAkWQPAiCatL7YQb9RQhUEAREVpcgCKpL30xn6XNCoIKg42nLZOE5IgQqCDqd1pZbKYUQqCAIqKoHVc3BD/2IpG0lWdLyTcpdmtdRDoJBTn6K12griY4TKGAicGP+2y22t7T9YlssCoKy6X3ShH6howRK0khgPWBvYJe8b1FJ1+d0OPdJWj/vf0zS6Pz6Qkl/z+ly9ivtAwRBv1BdD6rTYlDbAJfZfljS85LWIC2ydbntoyUNBebp4ry9bL8gaQRwu6TzbD/fRruDoH+p6EjyjvKgSN26c/Lrc/L724E9JR0OrGT7lS7O+6Kku4FbgbHAh7qqXNJ+kiZLmvzcc6FfwQBBpLl4jbZmVbSQuDOXW1PSLEk7tmJaxwiUpAWBjYEzJD0GHALsBNwAfBR4Cpgkafe68zYENgXWtb0KcCcwvKtr2D7d9njb48eMWaifPkkQ9DVqYWvKJBok7gTIPZQfAVe0alnHCBSwI3CW7aVsj7M9FniUJE7P2P4FcAawet158wPTbb+an/yt01arg6Ad9DIGZft64IUmxQ4EzgNaStoJnRWDmkhS7yLnkZR/pqS3gBnA7nVlLgP2l/Qg8BCpmxcEg4vmMaheJe6UtDiwHbARsGar53WMQNneqIt9JwAndFN+XOHthH4yKwgqQEvrQfU2cefPgK/bnt2TpV06RqCCIGhEvz/FGw+ck8VpNLClpFm2L2x0UghUEAT9PszA9tLvXkqTgEuaiROEQAVBoN4v+dssceec1hsCFQQBvX2g30rizkLZPVotGwIVBEEkTQiCoKrEgnVBEFQYhQcVBEFlqehk4RCoIOh0FGmngiCoNOFBBUFQVSIGFQRBNSl3Wd9GhEAFQRAeVBAEVSY8qCAIKkk8xQuCoKqIysagZLtsGwYlkp4DpvRxtaOBaX1cZ18S9vWOvrZvKdtjmhWSdFm+diOm2W645nh/EAI1gJA0uZerGvYrYV/vqLp9ZVDN0H0QBAEhUEEQVJgQqIFFy1k0SiLs6x1Vt6/tRAwqCILKEh5UEASVJQQqCILKEgIVBEFlCYEKmqKcbVEVXRdWdalq699XAUlzl23DQKSSN1wnUcUvUxFJsm1JnwBOrdoXrWZffr06gCv25EfSSsDekhYv25aBRghUidR9ubaStH7ZNtWTxWlL4AjgD7bfrJKoFtrvAOAMSYuVbFJXLAZsSkr3XUX7KksIVIkUvlxfAb4D/Kd4vApdqixGGwGHAvdlT+q3kjaX9L4qiJWkbYE9gY/bnippXLkWJWptY/ty4OfABsAnQqRap/QvQKcjaTywI7Au8G9JH5G0G4Dt2SXZ9I7oZBF9AdgPOBdYCZgJ7JIPt707VYiJKb+eH/gdsIqk7wJXS/q9pPnabVvRxmLb2L4COAH4KCFSLRPLrbSZ+hsXmAo8B/wKeBlYAlhE0mjbx5Vln6SPAR8GDPwYWA+YavufkpYDJgGL0vcrNrRkX347V+5y3kRqv3WAs4G1gTOAVYHr22lfjYJ3vD+pHV8FfgEcD3wBmC3pUttPlmHfQCEEqo3UxZxWA94ApgPfB/YAfm37Tkn7ACPKsDGL0+bAD4DPAn8BFrL97Wz3J/Kxb9puqzjV7Mt2fBZYX9KdwJ+ADWseZxbXscC/221fkRwX2w74JnAcMNT2IZLmBb4EzJL0G9tvl2hmpQmBaiOFL9chwDbA28A9wF9tfy4f2ws4ANi1XXZJWhgYYfux3GXahiSYiwAPkeInNRYHDrJ9VRfeYLvs/Rypi3koSdzXB34DXJDb7wvAZyrgnSwEfALYB3gF+Jak99m+WtJrwJQQp8aEQLWBOs9pWdKv6keBMcBHgM0lPQu8RIpH7Wb7gTbZ9j7Sl+g6ScNtvy7peZL3tBywh+0nJH0aeN32qbVz2yVOksaSvuAzgPmAhYGtgc+QRP6vwO6SXgLOIwl+mV3PGosAk4EHbU/I5faX9KrtM9tp30AlguT9jKSRBXF6P+mLNi8wt+2ngZtIQd6xtu8HdrJ9X7vss/0GKcD8AnCspCWBG4C9gB/afjgH8r8JPN8uu2pI2oLkHe1MaqMXgBNJj+63tr0xcDEpdrcb8GaZ4iRpO0lbSloT+CGpzSbnY3sCBwG3ttO+gUx4UP2IpLmAfSQ9RlpSdYLtHSTdAnxD0rG2/yPpX8AHAWzPaJNtI0hf+IezbR8mBem/AhwG7EsSrDuAFUkxp2vaYVvBxo+TvuQHAA/Yri2H+1K2ubZM7RqkrujXbL/WThvhv4aLbE2KiX0XOAr4KnByjjmOBXbIbR60QCy30s9I+hDpF/RFYLzt5/KAzG1IT8YuJD3C38L2P9to10rAVsACwOrARNJTuR2ABYFvAyNJwfq5bD/YzpiTpAWBC4DDbF9b2H8AMMv2zyVNAj6U7d3Z9j3tsK1gS+2Jp0ge3Qn5B+h7pCeI2+TjQ0ntOMz2i+20caATXbz+5yXgFFKsZELedxNJAE4mda0mtEucJC0jaSOSxzGW5J3caPu5/AW/iLRw/0+A99t+xPaD0PYpJHMDQ4G7Crb/hOSRrCzpQNt7kIL565cgTqMK7bEI8GzefyJJnHbK4jSRlLxgRohTz4kuXj8iaQNgLeCnpDEwl0ua3/aJkjYDrinhSdNSwGvALOA00qDLBSXtYvsc23fk7t+GpDFQpZC7vlNIgfq/5d2XAt8iDWrdKbdl27zOGpLmBz4j6RVgLmA72xMk/RvYFtg0P2zYC/gi0PZsKIOFEKg+pIsu0FzACqRpGCeTnt6dL2ll0k27cRtt+x/SUIJrcvfpflJc6RBJ+wGbSXoReIzUbfqF7WfbZV8X9g4hdYv3kPSQ7RdtX52PLUHqjrZ9mk2Oi60DnA9cBbxO6iJDGiT6JnCRpCtIHvMutv/TVV1BC9iOrY83UpfjndfAqcA3SF+oscBOwDJttmk/YDawan6/E3An6UkYpLE655NGtW9WcvvVYqOjgMtz+20CfID0dPHvwPIl2LUVcDfwSdKP++HAg8CX6sptDmzW7v/xYNxKN2AwbMDChdejgP8DTi3s2yjf2D8CFm+zbeNII8EBPk+Kea2W328L3EuaZAvJK1ml7PbMtgwttOdPSN7JVcCVwEol2LMIcA2wZt3+8aQR6wfm9zsC/6/s9hssW3Txeomk5YEHJB0P3G/7DElHk9b/ORH4olO36m+kJ2avttnEnYBrJb1k+5Q89OGvkjaxfaEkAyfleM7vgKfbaZyktYD5bV9Z7CLbflvSXLZfkXSIbedxZG/abncbQpqW9Bbweo7RfZ30w/MM8CRplPhKpK77ZiXYNyiJYQa9JMdDziGNfdkUeCK/ng5sAfy//H534NO2HyvBxtEkz6O2HMlBpLFOG9u+S9J2pNTWN7TZrm2AI4GvAVfbfjPvH297cjttaUYeSvAVUvdtRZI3dyOpi7cVKXb3FHBfGf/jwUp4UL3E9pOSbiMFSieQPJZdSd2lrwBLkwZB7t+uG1fSSGBRp5UH1iU9BfsbcK6kHW0fL+lt4HZJa9u+IJ/XznFOc5NGhx/kPAA0B8aXAQ6VdDDwmO3ZZc35K5I9uJ8DN5PiiBc5jcJH0r7AHbYvKdPGwUiMg+oF+VcVUgDcpJHNU0kjm+8HvkxahO4ot2n6SrZpfuAUST8kLUOyvO39SUHxiyQtYvskkueyUO3cNouASQNBx0taKYvq4qR78iHSMIgFSrCrW5zGMt1i+9yCOH2StEbWHeVaNziJLl4vyYIwF2lFzGVI4vSNHN9ZDnjW9vQ22bIIsJHt3ystR3ICcKTtowplTiA9EdvUaS5gWz2nOntXJK2UsCxpjNNKJEFfD3iUtNbUHu1qv54gaVGSB7gvaRR72+ZPdhIhUH1EFqPrgJNtH1mSDVuRViE4lzRJdQxpxPqhtv9QKHc08BfbN5Zg45DcbRuaA+ELkMT9ZJKYvyLpSNJo9t/abvsE5VbIgfKNgYdsP1K2PYOViEH1EbYfkvQNYJykecp40mT7kvyUbhvSKPXfSPoPKRvLy6Ru06eAfdrtMUlaGnjS9ltZpN7OMafZJA90ZeDWPA1nM2DHqooTgNOk5D+XbcdgJwSqb7kV2L6dF1RKZbSU7ZsBbF+Qv/jbSyKL1JdIy6UMA44vQZwWJMW7npF0dEGkZgMv5YcMu5Pm1S0I7OfyF5sLKkB08fqYdnpPOf61GykO8i3b1xeObUfyln5q+5YcM8H2021+Wre07UclbU2KfT0D/CSL1DDbs3K5xUjjjLD9XDtsC6pPPMXrY9rZtcsi82fSgm5fy5OTa8cuID21+0aO9zxdC4q3UZwWAD4naThwCWmlhLHAwXkQ5ixJNS/+aacVFUKcgncIgRrg5DjN+aRVJQ8uihRpzM4UUpynDGaSAuCrkwL11wB/5L9FqvRxTkE1CYEaBDgtg/tHkodymKRdc7D5p8AVJcSclpC0EGmO4hvA+4C1JH3JaUWCP5IGsn4ni1SIU9AlESQfoOSYzcvATCdekHQmKcZzIGnaxXfzk712xpy2IQ1cfQZYVNLFwEnAMcBB2Zbj8tPGzUhJECr7tC4olwiSD0BywPsnwCF5bl3tiVjt+FzA2+2eJpK9tp+Tlg/+Fyn7ypnAZaTkn6uRFnC7y/b3yxqOEQwcoos3AMnB7jdJE21xXYp022/V9rW5+/QR0rrcfyelqHqINDdxa9JyJDeSVvFcVtKCIU5BM0KgBgB5XBOSFlFKwgCpGzVDKelmcV5gGfbVrr0E72ZaeSM/PZxCWlF0Qh4PdTPwuRw3C4KGhEBVGEnzSJo7d9XWIKVg+qakw0mTbVcgLf9R6oTawrX/CPyvpDXyPufu5nOkONObtl93CamhgoFJBMmrzTrAJyVdSRKiU0mTaU8meSUfAA6QdL3bnKyyG24lZazZOce+JgOzJa1HWplgrlKtCwYcESSvIHn6ytPZc7qUlGFle9uX5eNDSEv5fpyUiOE7tm8qydz3kG3fhzSR9hZSrGxHYKLtu8u0LRh4hEBVEKXlg38J3EdajWAV0liiXW2/VFd2P9LKnTvXpo2UTZ7pP55k1zTSygkPlWtVMBAJgaooksaRntLtbftNSacCH7S9uaRlSIv3/1+ec/d5YKvaImpBMFiIIHmFqD0NkzTSaXngJYDf5i7dAcDjku4hTWupzVl7nbRsbohTMOgID6oi1AZUKiWGnAB8zfarki4hZQKupdLeAXjC9m3F80o0PQj6jRCoCpGfdp0O7FsMeku6EBgOTKiJUQhT0AlEF69EJI2V9JHCrg2B39u+SdLQPIYI29uS1kqqpdiuTCKBIOhPYhxUSeS40irAE5Lms/0y6YnX0rUieVG3dYBnbG9dlq1BUBbhQZWE7dlOedQeAX4naTPgCmALSdsDi0haHfg1aRncIOg4IgZVAoWA+CakxduGkAZcfguYm5T191VSnrgf2764NGODoESii1cCWZxWB74H7A/8kzS37kektcW3zsvlzm/7sQiIB51KCFSbKIpMHmi5PzDF9r1530WkpXl/KukY238GpkMExIPOJWJQbSAnDVg3v/4fYFXgaWCMpC3hnWV7LyElQHimHEuDoFpEDKoN5Am0W5OWuF2JtLDb26QpKvMDV9q+Mpd9JxVTEHQ64UG1AdtPkcYxbQf8zfY029OBs4AXgK0LnlSIUxBkQqD6kcLcuhWAP5CSbD4k6YeSFrH9OHApaTG3f5VnaRBUk+ji9TOSPkaavvIJ23flvHVbkSb53kEaHX5a9rKCICgQHlQ/ImlJ0jK9u9q+C8D2dcCfcpFjgNtDnIKga8KD6gcKAzGXAo61vWPeP9z26zlZ5Vu5m/efGOcUBF0THlQfUshuMm/+OxVYTNJXAbI4bQYcl+fiPZP3hzgFQRfEQM0+ouA1bQF8XtLtwJOkRJVH5MGZ15CW8D2sPpddEAT/TXTx+hBJ6wOnkJIGfIG0jviewBjgUFJGllts/yW6dUHQnBCoXpAHYI4B7skZWD5Jmp4yEzgR2MH2FEljbD9XOC/EKQhaIGJQvWNb4ARgtfz+VWASKX/d5lmctgAOlFSLS0XMKQhaJARqDpC0jKRdbJ9MWsPpcEnjgetI2XXvzuXWB44FbrM9szSDg2CAEgLVQyQtB5xfe2/7KFI23cOA5UmTfR8DLiMFxA+1fUnhCV8QBC0SMageIOnDpCD4WbZ/mdcMX8n2HZIOIy3he7Ttv0saCWB7RsScgmDOCA+qRbIYXQy8ksVpKMlL2gDA9hGkqSvHSFrT9gzbM/KxEKcgmANiHFSL5JHfE4E/SzqAtGTKXbaPK5Q5StLrpRkZBIOM6OL1kBwMvxL4h+11C/vXAVa1fVppxgXBICO6eD3E9mRS/rrlJe0LkHPb/YKUoSUIgj4iPKg5JHtSl5LWeVoJ+FFeRzwIgj4iBKoXSFoTuBrYzfaFJZsTBIOOEKheImlkDCUIgv4hYlC9J0aIB0E/ER5UEASVJTyoIAgqSwhUEASVJQQqCILKEgIVBEFlCYEKgqCyhEAFQVBZ/j+dIi0S2xbLIQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVIAAAEaCAYAAABD3t/uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvBklEQVR4nO3dd5xcVfnH8c93k1ATEEikBiJIE+mhChJ6EaSXiCBNRGkqIIj8KCIK0gQRYihGEClK7yC9Q+glgkonEQihhFBDvr8/zlm4jDuzu5nduTPJ83695pWZ2+bZm5lnzj3n3HNkmxBCCFOvrewAQgih1UUiDSGEOkUiDSGEOkUiDSGEOkUiDSGEOkUiDSGEOkUiDaEJSLpO0vfKjiNMnUikgKT3Co8pkj4ovN6x7PimhqQXJK1Xdhyha2xvbPvPZcdRNklHSvpL2XF0V9+yA2gGtvu3P5f0ArCH7X+UF1Ftkvrantzq79EdZcbTlfdutvPVGyT1sf1p2XHUUtr/g+14FB7AC8B6+XkbcAjwH+BN4GJgzrxuCGBgV+Bl4C1gL2Al4HHgbeC0wnF3Ae4GTgPeAf4JrFtYPztwNjAOeBX4FdCnYt+Tcxy/AhYBbsmvxwPnA1/K258HTAE+AN4DfgYMA16p8bceCfwd+AvwLrBHrZg6OG8rA6Pzvq8BJxXWrQHck8/Jy8Auhb/5XOAN4EXgMKCtxt88I3AC8FJ+jxHAzFXi6dHz3cHxu3W+gD7Aifn/6nlgH9Lnp29efxvpBxzS5+6wfE5ez+do9orP3ffyeRgP/KLG53lUPk83AROB24GFCuuXyOsmAM8A21XsewZwLTCJ/Fnp4Dw/l4/9PLBjYd1uwBjSd+OGivddqvC+rwGHAhsBHwOfkD63j+Vt5wOuzNv+G/h+rf+HUvJG2Ymr2R58MbnsD9wHLED6Ev8RuKDiAz0CmAnYAPgQuBz4MjB//hKsVfjATQZ+AvQDtid9wdsT82X5+LPm/R8AflCx776kq4iZga8C6+e4BgF3AL/r6O/Ir4fReSL9BNiC9EWeuVZMHZy3e4Gd8vP+wKr5+UL5SzY8/91zAcvldecCVwAD8vl8Fti9xt98cv5CzZn3uQr4TZV4evR8d3D8bp0v0o/s06TP0hzAP6ieSHcjJYyF87m8FDiv4nN3Zn7PZYGPgCWrnIdR+fx/k/RZOQW4K6+blfTDtmv+O5cnJeavFfZ9B/hG/htnqjj2rKTktXh+PS+wVH6+ef4blszHPgy4J68bQPqxOYD03RkArFI4r3+peJ87gNPztsuRfnjXqfb/UEreKDtxNduDLyaXMXyxFDNv/k/rW/hAz19Y/yawfeH1JcCP8/NdgLGACusfAHYC5s5fhpkL64YDtxb2famTuLcAHuno78ivh9F5Ir2jsK5mTB28/x3AUcDAiuU/By7rYPs+pNLH1wrLfgDc1tHfDIhUKlqksGw14Pkq8fT2+e7W+SJdPfygsG49qifSm4EfFbZdvIPP3QIVf9cOVeIcBVxYeN0f+BQYTPpxubNi+z8CRxT2PbfGOZiVdJWxNRUJDLiO/KOYX7cB75N+WIdT+Kx2cF7/Ung9OMc7oLDsN8Cojv4fynpEHWltCwGXSZpSWPYp6UvT7rXC8w86eN2/8PpV5//97EXSZctCpFLTOEnt69pIpYV2xedImptUuliT9IveRrqEqkfxPboSU9HuwC+Bf0p6HjjK9tWkL8J/Oth+YD7+i4VlL5JK8h3FMwiYBXioEI9ICbmaHjvfVXTnfM3XjePPx/+el7588XP338Lz9/ni56xqnLbfkzSBz8/DKpLeLmzbl1Q11GmctidJ2h44EDhb0t3AAbb/mY99iqQTC7uI9P9b7TPRkfmACbYnFpa9CAztSoyNEom0tpeB3WzfXblC0pCpON78klT4ci9IulR9mVSaGejqFeWueP3rvGxp2xMkbUGqD6y2/SRSImqPvw8pOVV7j67E9PmO9r+A4ZLagK2Av0uaKx9n5Q52GU8qZS1EuuSFdD5erRLPeNIP01K2i9vU0pPnu7NtOjvmONJlfbvBNY47lnRe2i1Iqmp4reIYXfXZe0nqT6oaGZtjvt32+jX2rXkebN8A3CBpZlKd8JmkH/eXgWNsn1+5j6SFgB26+H5jgTklDSgk01qfk1JE96faRgDH5P94JA2StHkdx/sysJ+kfpK2JdUfXWt7HHAjcKKk2SS1SVpE0lo1jjWAVCH/jqT5gYMq1r9GqmNr9ywwk6RvSepHqrOasdrBuxuTpO9KGmR7CulyD1KD1/nAepK2k9RX0lySlnNq/b2YdH4H5HP8U1KjQUfxTCF9SU+W9OX8nvNL2rDa30DPnu+aunDMi4H9c8xfAg6ucbgLgJ9I+kpOfL8GLurKD1oVm0haQ9IMwNHAfbZfBq4GFpO0Uz5H/SStJGnJrhxU0tySNpc0K+lH5D3S/zmk787PJS2Vt509/x+Q33deST+WNGP+/18lr3sNGJJ/kMlx3gP8RtJMkpYhXf00VRepSKS1nUIqwdwoaSKp4WmV2rvUdD+wKKl0dQywje0387qdgRlIpbO3SC2R89Y41lHACqTGgGtIDRJFvwEOk/S2pANtvwP8CDiL9Gs+CXilk3i7E9NGwFOS3iOdtx1sf2D7JWATUsPCBOBRUgMJpMacSaRW37uAvwLn1IjnYFIDxn2S3iU12CxeY/uePN9dUeuYZ5IS7ePAI6SW8MmkqqJK55Aur+8gtYR/SDpXU+uvwBGk878i8F2AXMLbgFQ6HEuqLjiOGj+wFdpIP35j87HXAn6Yj31ZPtaF+f/qSWDjwvuuD2yW3/NfwNr5mH/L/74p6eH8fDipbngsqUHvCDdZ90R9sQop9BZJu5AaE9YoO5bpQbOfb0kbAyNsL9TpxvW9zyhSI+Nhvfk+07sokYbQAJJmlrRJrt6Yn1RCvKzsuELPiEQaQmOIVB3zFunSfgxweKkRhR4Tl/YhhFCnKJGGEEKdIpGGEEKdokN+Lxk4xwAPmW9g2WHUNPbpF8oOoab5vr5I2SHU1lbrpqom8PabnW9ToodeenO87cqbQmpaVPL7nWwzFm6wvVFH6yQNJo3xMDepI/9I26d0sN0w4Heku9XG267ZxzgSaS8ZMt9AHrj4iLLDqOmXX9+17BBqOvyy35YdQk2aea6yQ6hpyhWjyg6hpr57j3qx862+6H3S6C+1HJ5uP65mMuk21oclDSDdcnyT7fa768g3TJwObGT7pfYbQGqJRBpCaBmivqSV70Abl59PlDSGdP//04XNvgNcmm8mwfbrnR036khDCC1FnTyAgZJGFx57dnicNF7G8qQ74IoWA+aQdJukhyTt3FlMUSINIbSULtRMj7c9tNYGeQyD9mEu361Y3Zd0K+26pDFf75V0n+1nqx0vEmkIoWWI+i+j86A9lwDn264cowLSGBRv2p4ETJJ0B2l8iKqJNC7tQwgtpU8nj1qUBos9Gxhj+6Qqm10BrJFv552FNFDRmFrHjRJpCKFl9ECJ9BukWRKekPRoXnYoaYxTbI+wPUbS9aSRuqYAZ9l+stZBI5GGEFpKPb13bd/FZ21SNbc7Hji+q8eNRBpCaBk9UUfaGyKRhhBaSjPeTxaJNITQMqJEGkIIPSBKpCGEUIcokYYQQp1ElEhDCKFuUSINIYQ6ddoJtASRSEMILaNZL+07LSVLsqQTC68PlHRkd95E0jBJqxdej5K0TRf33SLHsER33rOb8Q2VdGpvHT+E0HPaOnmUFVNnPgK2kjRV82ZI6gsMA1bvZNNqhgN35X97nKS+tkfb3q83jh9C6DntJdKpHbSkt3QlkU4GRgI/qVwhaYikWyQ9LulmSQvm5aMkjZB0P3AxaXaAn0h6VNKaefdvSrpH0nPVSqd5zMA1gN2BHQrLh0m6XdIVef9jJe0o6QFJT0haJG83SNIlkh7Mj2/k5UdKOk/S3cB5+XhXt7+npD/l4zwuaeu8/Iw8SOxTko7qwnkLIfSCVi2RAvwB2FHS7BXLfw/82fYywPlA8fJ4AWB121sBI4CTbS9n+868fl5SktwUOLbK+24OXJ8HVH1T0oqFdcuSEvSSpNFcFrO9MnAWsG/e5pT8visBW+d17b4GrGe7sqT7f8A7tpfOf9ctefkv8mCxywBrSVqmMlhJe7aPyv3GWxOr/EkhhKnVyiVS8gjS5wKVl7+rAX/Nz88jJcZ2f7P9aY3DXm57Sp50au4q2wwHLszPL+SLl/cP2h5n+yPgP8CNefkTwJD8fD3gtDxc1pXAbLmUC3Cl7Q86eM/1SD8cANh+Kz/dTtLDwCPAUqRE/AW2R9oeanvooDkGVPmTQgj1UJtqPsrQnVb73wEPA3/q4vaTOln/UeH5//z1kuYE1gGWlmTSj40lHdTB/lMKr6fw+d/VBqxq+8OKY3clvuL2XwEOBFay/ZakUcBMXd0/hNAzJOjTp5Py35Ra5bfe0eUqBdsTSPWduxcW38PndZc7AndW7pdNBLpbRNsGOM/2QraH2B4MPA+s2cl+RTfy+WU+kpbrwj43AXsX9pkDmI2UeN+RNDewcTdiCCH0IEk1H2Xobt3siXxxzuh9gV0lPU6qp9y/yn5XAVtWNDZ1ZjhwWcWyS+he6/1+wNDcaPQ0nU+JDfAr0gyCT0p6DFjb9mOkS/p/kqoy7u5GDCGEHiPa+rTVfNTcWxos6VZJT+eG42o5C0krSZrcla6anV7a2+5feP4aMEvh9Yuky+/KfXapeP0sqZGm3Z0V6/tTwfbaHSwrNmbdVlg+rPD8tvZ1tscD23dwnCMrXhf3eQ/4Xgf77FK5LITQYKLeetDJwAG2H5Y0AHhI0k25rebzt5H6AMfxedtLTXFnUwihZQg6LXXWYnscMC4/nyhpDDA/8HTFpvuSroBX6spxI5GGEFpHD9aDShoCLA/cX7F8fmBLYG0ikYYQpjWiC632MFDS6MLrkbZHfuE4qRvkJcCPc/fOot8BB9ue0tWkHYk0hNA6ulZHOj7fPNPxIaR+pCR6vu1LO9hkKHBhTqIDgU0kTbZ9ebVjRiINIbQQ1VVHqpQdzwbG2D6po21sf6Ww/Sjg6lpJFCKRhhBaTJ11pN8gddV8It/xCHAosCCA7RFTc9BIpCGEliHV3Wp/F90YG7qr3R4jkYYQWkpbSffT1xKJNITQOkq8DbSWSKQhhJZRb4f83hKJNITQOgRqvjwaiTSE0FqiRBpCCHUQoi3qSEMIoQ51dn/qLZFIQwgtpazpRGqJRBpCaBlSfbeI9pZIpL3kfc/MIx8uXXYYNR1+fZPPKv1Jl6fVKoXbypqzsmseXWWfskPoxKip2iv6kYYQQj0EbX2b7wcsEmkIoYUo3XDfZCKRhhBahqJEGkII9Ys60hBCqIeEokQaQgj1acYSafN1yAohhCokob5tNR+d7D9Y0q2Snpb0lKT9O9hmR0mPS3pC0j2Slu0sriiRhhBaiuob/mkycIDthyUNAB6SdJPt4rz2zwNr2X5L0sbASGCVWgeNRBpCaB1dm0W0KtvjgHH5+URJY4D5gacL29xT2OU+YIHOjhuJNITQQoT69Exjk6QhwPLA/TU22x24rrNjRSINIbSOrpVIB0oaXXg90vbILxxG6k+a2/7Htt/t8K2ktUmJdI3O3jASaQihZXRxqpHxtodWPYbUj5REz7d9aZVtlgHOAja2/WZnbxiJNITQOiRom/rGJqW+U2cDY2yfVGWbBYFLgZ1sP9uV40YiDSG0lDqH0fsGsBPwhKRH87JDgQUBbI8ADgfmAk7PfVYn1yrhQiTSEEIrkVAdJVLbd5FqCGptswewR3eOG4k0hNAyBCgGdg4hhDrU2Y+0tzRfap8KkuaW9FdJz0l6SNK9kraUNEzS1Z3se6SkA7v5fu/VF3EIYeqItj59aj7K0PKJNLfCXQ7cYXth2ysCO9CFuxFCCC1GQJtqP0rQ8okUWAf4OLe2AWD7Rdu/L24kaU5Jl+fBCO7L/cTaLZtLsf+S9P28fX9JN0t6OA9esHlj/pwQQjVq0hLptFBHuhTwcBe2Owp4xPYWktYBzgWWy+uWAVYFZgUekXQN8Dqwpe13JQ0E7pN0pW33+F8QQuiaqCNtDEl/kPSYpAcrVq0BnAdg+xZgLkmz5XVX2P7A9njgVmBl0kXEryU9DvyDNLDB3J28956SRksa/dZbb/XgXxVCaKc+bTUfZZgWEulTwArtL2zvDawLDOrGMSpLmQZ2zMdY0fZywGvATDUPYo+0PdT20DnmmKMbbx9C6BJ14VGCaSGR3gLMJOmHhWWzdLDdnaTkiKRhpPtx2wcr2FzSTJLmAoYBDwKzA6/b/iQPXrBQ74QfQugOtanmowwtX0dq25K2AE6W9DPgDWAScHDFpkcC5+RL9feB7xXWPU66pB8IHG17rKTzgaskPQGMBv7Zq39ICKELymuZr6XlEyl8NljrDlVW35a3mQBs0cG+R1Y55nhgtSrr+k9FmCGEOqk5p7WfNhJpCGE60qf5Mmkk0hBCS2nGWUQjkYYQWkeT9iONRBpCaC2RSEMIoQ4qr4tTLZFIQwitpfny6DTRIT+EMB1RH9V81NxXGizpVklPS3pK0v4dbCNJp0r6dx7kaIWOjlUUJdIQQusQ9XYknQwcYPthSQOAhyTdZPvpwjYbA4vmxyrAGfnfqqJEGkJoGWmqkakvkdoeZ/vh/HwiMIY0IFHR5sC5Tu4DviRp3lrHjUQaQmgp7Xc3VXsAA9tHYcuPPTs+joYAywP3V6yaH3i58PoV/jfZfkFc2ocQWkfXWu3HdzZ9sqT+wCXAjwuDF021SKQhhNZSZ/cnSf1ISfR825d2sMmrwODC6wXysuoh1RVRCCE0kuobRi/P8XY2MMb2SVU2uxLYObferwq8kwdGqipKpCGE1lJfq/03gJ2AJyQ9mpcdCiwIkOd+uxbYBPg3acjNXTs7aCTSEEJL6axlvhbbd9FJl/48L9ve3TluJNIQQusocTqRWiKR9pJZpkxk+Y/uKDuMmm7f/riyQ6hprSuPLDuE2mZ8u+wIauu7QNkR9Dih0ia4qyUSaQihtcR4pCGEUAcRw+iFEEJ9BG19yg7if0QiDSG0jiiRhhBCvQR9okQaQgj1icamEEKog4gSaQgh1EfQFv1IQwhh6olIpCGEUJ8okYYQQn1E3CIaQgh1UyTSEEKYehJEiTSEEOrUhHWkzRdRCCFUo9zYVOvR6SF0jqTXJT1ZZf3skq6S9JikpyR1OkJ+JNIQQmupM5ECo4CNaqzfG3ja9rLAMOBESTPUOmBc2ocQWoeou47U9h15TvuqmwAD8kR5/YEJwORax4xEGkJoIepKq/1ASaMLr0faHtmNNzmNNJPoWGAAsL3tKbV2aNlEKulT4InCogttH1tWPCGEBul8GL3xtofW8Q4bAo8C6wCLADdJutP2u9V2aNlECnxge7mp2VFSX9s1i+ohhCakhgyjtytwbJ5N9N+SngeWAB6otsM019gk6QVJA/PzoZJuy8+PlHSepLuB8yQNkXSLpMcl3SxpwbzdKEkjJI2W9KykTfPyPpKOl/Rg3ucHZf2NIUzXpNqP+r0ErJveSnMDiwPP1dqhlUukM0t6tPD6N7Yv6mSfrwFr2P5A0lXAn23/WdJuwKnAFnm7IcDKpGL9rZK+CuwMvGN7JUkzAndLutH28+0Hl7QnsCfAgnPPUfcfGELoQJ1TjUi6gNQaP1DSK8ARQD8A2yOAo4FRkp4gNW8dbHt8rWO2ciKdmkv7K21/kJ+vBmyVn58H/Law3cW5cvlfkp4jFes3AJaRtE3eZnZgUeCzRJortEcCDF1isLsZWwihMz0wr73t4Z2sH0v6vndZKyfSaibzeZXFTBXrJnXxGJVJ0KT/vn1t31BHbCGEujTn6E/NF1H9XgBWzM+3rrHdPcAO+fmOwJ2FddtKapO0CLAw8AxwA/BDSf0AJC0madaeDDyE0AW9X0faba1cIq2sI73e9iHAUcDZko4Gbqux/77AnyQdBLxBaqlr9xKphW42YC/bH0o6i1R3+nDuqPsGn9ephhAaJeZs6jm2O6xxtn0nsFgHy4+seP0iqZ9YR/5he6+K7acAh+ZHCKEMIhJpCCHUpznrSCORVrC9S9kxhBBqiRJpCCHUp/NbRBsuEmkIoXVEHWkIIdSrS6M/NVwk0hBCa4kSaQgh1CnqSEMIoV6RSEMIYeqVeBtoLZFIQwitJS7tQwihTlEiDSGEOjVh96fmiyiEEKrpbAi9LpRWJZ0j6XVJT9bYZpikRyU9Jen2zo4ZiTSE0FrqH490FLBR9cPrS8DpwLdtLwVs29kBI5GGEFpLnYnU9h3AhBqbfAe41PZLefvXOztmJNIQQmtpa6v9SJPajS489uzmOywGzCHpNkkPSdq5sx2isam3zDoXbSt0ev5LteZhVafpbg5N2Dpb9PJhZ5cdQm3Hrl52BL2gS7Pfjbc9tI436UuarmhdYGbgXkn32X621g4hhNAaRN3TMXfBK8CbticBkyTdASwLVE2kcWkfQmgh6sKjblcAa0jqK2kWYBVgTK0dokQaQmgtdZZIJV0ADCPVpb4CHAH0A7A9wvYYSdcDjwNTgLNsV+0qBZFIQwgtp75Sp+3hXdjmeOD4rh4zEmkIoYUI1Ot1pN0WiTSE0DpiqpEQQqhXTDUSQgj1i0QaQgh1ikQaQgj1iEv7EEKoj0DR2BRCCPWI7k8hhNADokQaQgj16f1BS7otEmkIoYX02MAkPSoSaQihdTRmGL1ui0QaQmgxzVcibb4OWb1M0haSLGmJTra7Nk+CFUJoGrnVvtajBNNdIgWGA3flf6uyvYnttxsSUQih6+qfRbTHTVeJVFJ/YA1gd2CHvGxeSXfkOayflLRmXv6CpIH5+eV5EqynpmIirRBCj4kSaTPYHLg+T2L1pqQVSVOv3mB7OdK8LI92sN9utlcEhgL7SZqrQfGGECrVWSKVdI6k1yXVHPVe0kqSJkvaprNjTm+JdDhwYX5+YX79ILCrpCOBpW1P7GC//SQ9BtwHDAYW7ejgkvZsnwL2jTfe7PHgQ5juiXSvfa1H50YBG9V8G6kPcBxwY1cOON0kUklzAusAZ0l6ATgI2A64E/gm8CowqnIOa0nDgPWA1WwvCzwCzNTRe9geaXuo7aGDBkWhNYSeV//kd7bvACZ0stm+wCXA612JarpJpMA2wHm2F7I9xPZg4HlSEn3N9pnAWcAKFfvNDrxl+/3c0r9qQ6MOIXxRL9eRSpof2BI4o6v7TE/9SIeTiupFl5CK+ZMkfQK8B+xcsc31wF6SxgDPkC7vQwhl6bwedKCk0YXXI22P7MY7/A442PaUro40Nd0kUttrd7DsVODUKtsPKbzcuJfCCiF0S5fGIx1ve2gdbzIUuDAn0YHAJpIm27682g7TTSINIUwrerevqO2vfPZO0ijg6lpJFCKRhhBaTZ2d7iVdAAwjVQG8AhwB9AOwPWJqjhmJNITQOlT/VCO2a97VWLHtLl3ZLhJpCKHFNF9no0ikIYTWEpPfhRBCPWJg5xBCqJuiRBpCCHWK6ZhDCKEOiumYQwihB0SJNIQQ6hN1pCGEUI/yphOpJRJpCKG1RIk0hBDqFSXSEEKoQ7TahxBCfURT1pHKdtkxTJMkvQG82MOHHQiM7+Fj9qSIrz7TW3wL2R7UnR0kXZ/jqGW87ZqT2/W0SKQtRNLoOkf+7lURX30ivtbVfM1fIYTQYiKRhhBCnSKRtpbuzIRYhoivPhFfi4o60hBCqFOUSEMIoU6RSEMIoU6RSEMIoU6RSEOnpHQriZpxjgc+j6/a62YgaYayYwi9pym/GNOTZvzSF0mSbUv6NnBGsyWE9vjy8xUA3GQtqJKWBnaXNH/ZsVTT7J/DZheJtEQVSWBTSWuWHVOlnEQ3AY4C/mb742b60hXO397AWZLmKzmkjswHrAds0ozxVXwOV5U0S9kxtZpIpCUqfHh/Cvwf8N/i+ma4lM5Jc23gUODJXDL9i6QNJM3YDElV0hbArsC3bI+VNKTciJL2c2P7BuCPwFrAt5stmRY+h/uS+orOUW5Eraf0L+r0TtJQYBtgNeA5SatL2gnA9pSSYvosOeYv2QRgT+BiYGlgErBDXt3wy+hCna3y89mBvwLLSjocuEXSBZJma3RsxRiL58b2jcCpwDdpwmQq6VukH6O1bb8qaUlJg8uOq1XEMHoNVvkFA8YCbwDnAO8CCwDzSBpo++Sy4pO0EfA1wMBvgTWAsbb/JWlxYBQwLz0/wlWX4ssv++WqhrtJ529V4HxgFeAsYDngjkbG165QytuLdB7fB84ETgH2AaZIutb2K2XE18Hn8F3gUmA3SQOA7YD7JJ1me3QZMbaSKJE2UEVd1PKS2hPVr4EPgD/Z3oqUFCaXEWNOohsAvwHuAg4DjrJ9e06i3yZ94X5ju6FJtD0+AEk/AM6RdADpczzM9na2rwBWBAYDzzU6vqJcb7sNcB7ph2gv2/cDfwI2BTaQGj9KccXncD5JcwPPAP2B5YGbgXWAD0n1u6ETUSJtoMKH9yBgc+BT4HHgZts/zOt2A/YGdmxUXPmLNLPtF/Kl8ubALsA8pC/YHwubzw/sb/sfHZRqGhXvD0lVC4eSfoTWBP4MXJbP3z7A98oq7RXMBXwb2AOYCPxC0oy2b5H0AfCi7U8bHVThc3ggqf57DuDvwHG238rrNif9IB3f6PhaUSTSBqgoASwGbEmqKxsErE4qmbwOvEMqwexk++kGxTYj6ct+u6SZbH8o6U3gB8DiwC62X5b0XeBD22e079uoJJrr6iYC7wGzAXMDmwHfI/0Y3QzsLOkd4BLSD1OZVQ7t5gFGA2Nsb5y320vS+7bPbWR8lfKVxbq2N5Z0Dqkh7OS8bkvgp8Butv9TYpgtIy7te5mk/oUk+iVSQpgVmMH2OOBuUmPJYNtPAdvZfrJR8dn+iNRQMwE4UdKCwJ3AbsCxtp/NDWI/B95sVFztJG1IKm1uTzpHE4Dfky45N7O9DnAlqW55J+DjMpOopC0lbSJpJeBY0jkbndftCuwP3NfI+PJ7f13SIYVFnwB/knQY6Spjm1ytsyhwfX79RKPjbFWRSHuRpH7AHpK2kLQHcHZOnvcCh0ia3fZ/gf8AiwDYfq9Bsc2cS8eQpm5YidTg8FPgAeD7pMQ6CjgD+LntWxsRWyHGbwEnAEcCl9h+Pq96h1S33D7lxIqkKoif2f6gkTHC/3Rj2w9YgpTslwEOALaSdDGp58PWtp9tZHy5uuYD4OxcN98vvz6YdO42tv2JpH1y3Nh+rZExtroYRq+X5V/40cDbwFDbbyh1vN+c1ABxOekLtqHtfzUwrqVJDR5zACsAw0mt8FsDc5IamfoDM5Nax8c0sk5U0pzAZcARtm8rLN8bmGz7jznJL5rj3d72442IrRBLew8HkUrIp9reWtIvST0GNs/r+5DOY1/bbzc4xhnzVQeS5gKOI1XR7CPp18CSpJ4OC5GqSobnK6PQDVEi7X3vAKeT6vI2zsvuJiWqP5AuqTduVBKVtLCktUkluMGkhq27bL+RE9EVpAnOTgC+ZPvftsdAw2+9nAHoAzxaiP0EUglvGUn72t6F1Ci2ZglJdEDhfMwDvJ6X/56URLfLSXQ4aZK390pIorMBW0uaN5fuNyGVOPtJOs72ocCNpJb6RXLMkUSnQjQ29SJJawErAyeR+hDekC/nfy9pfeDWElqWFyJd1k0GRpA6188paQfbF9p+WNLMwDDS5XMpbP9X0oukBq/78+JrgV+Qbl7YLp/LhpXi20maHfiepIlAP2DL3GjzHLAFsF5utNuNdKnf0Bktc4wz2H5XkoHbSP+XS9n+VNJpwP6SjgV+kZf1tV1Kl7tpQZRIe1C+xCvqR7p02hV4jdRav6+kM0ml1JkbGNtXJS2d6zmfBZ4CFrZ9EPAksL6kjSQtQbpcPrNRPQeqxNtGqg7ZJTfSYfuWfJm6AKkaouG3p+aS3YGkBrkTgCNIpWJIl8gXA1dI+i3wE2DHXA/eqPiU/w8vz5/HsaSeDi8DC+bNxpB+3OfNfwNAKXfRTTNsx6OHH6RLzc+ekxprDiF98QeT7hpZuMEx7Un6siyXX28HPEJq+YbU1/FS0l1W65d8/trr7gcAN+Tzty7wZVJvgoeAJUqIa1PgMWBb0tXckaSk9OOK7TYA1m/0/3HFuRuUz9mXgFmAvYCrSPX0kG71XRH4cpn/19PKo/QApoUHMHfh+QDgIuCMwrK18xfwOGD+Bsc2BJgrP/8RqU52+fx6C+AJ0mAfkEooy5Z9PnMsfQrn8wRSae8fwE3A0iXEMw9wK7BSxfKhpDuo9s2vtwG+XtI5Wyafn1ny6xGkK6G58+uDgOtId639rf1zEY/6H1FHWqd8GfW0pFOAp2yfJekY0viTvwf2s32rpPtJLeTvNzjE7YDbJL1j+/Tc9eVmSevavjzXoZ2W6xv/CoxrZHCSVgZmt31TsVeAU71dP9sTJR1k2/kS/2PbjT6HAB+R+l5+mOuQDyb9QL4GvEK6a2lpUn3o+o0OTlKb7cclfQhcJGlr23tJeht4QNJKto9XuvFjK+BQ2w3vFzytiu5PdZK0AHAh6bJpPVJd1FXAW8CGwNfz652B79p+oYQYB5JKKu3DzO1Pqttbx/aj+U6W8bbvbHBcmwNHAz8DbrH9cV4+1E02UEaub/wp6bJ9KVLp+C7Spf2mwAvAq8CTjf4/VhrQej3bv82vLyDdnrqp06Aux5OS5zedRnaaof1chx5SdpF4WniQKu4vItWbfYd03/LdpFGILgR+RwMv90j9PxfNz1cjNSqOIH3x58nL9yGVsFYo7KcGxjgD6Y6qtQvL2oCvkupqFwbaGh1XF87raqRS/oyF5aOAbUuMazZStcwKwIC87EJS16YZ8uvTSQ2MfdrPazx67hGt9nUotNIfwud32owlVeI/RWq1/S/wKzfots8c0+zA6bl7yzmkhpm9SI1LV0iax/ZppJLgXO37On/jGsSkxDRU0tKS+pNuVWwj9XGdTB5guMFxVeXUF/Re2xf7807u25Iabh5udDySZsjdlt4l9WP9JXCcpFlt70CqD788d8r/EelH61OXNM7ttCwu7euUE1c/0gj3C5OS6CFO9Y+LA687j6jTgFjmIX1ZLlAaZu5U4GjbvypscyqpNXc9p9tVqw240Yh4lyKNLLUYqY/o0qQfnjWA50ljne7SqPPXHZLmJd3//33SXVUNGx+h8P4rk3owfIc0hsNFpCuPcaQ60EmSriHdybR1Wf/P04NIpD0kJ83bgT/YPrqkGDYljdp0MWmwjEGkO6gOtf23wnbHANfZvquEGNtsT5HUx6lBaQ7Sj9AfSD86EyUdTbq76i9u0gaR3OC0DvCM7X83+L0XJfUOWJRU1fAxKZn/M5/Ps0h1tkfYfk/S/LZfbWSM05tote8htp9RGl1niKRZXELLsu2rc6v85qS7pv4s6b+k2T/fJV0ufwfYo9ElE0lfAV5xGhyjLSfRNlLf1n6krjv3Kd2+uj5p9KGmTKIAToOjXFPS2w8kVck8TOqX/AHwcb5t9S1J3yfVPx8u6eBIor0vSqQ9KHeF+i2wQ6MSqdIUvwvZvqewbGtSK+2NOZl+m9Ti3Bc4pVg6bVCMcwLHkLoKHVNIplPy+p1yvG2kAUj2doPvnW81klYjjd0wgdSoKeBE2w8qTf73JqnhaWx5UU4/IpH2sEaWRnP97E6kerpf2L6jsG5LUunzJNv35jo1bI9rZF2ZpK/Yfl7SZqS62deAE3Iy/ez+bqXJ4D7JMb7RiNhaiaTVgQVtX1ixbGPS3WjLkRoZ/0O6+2spx1B4DROt9j2skZf0ORleQxr4+GdKg6S0r7uM1Ep/SK6PHNfeuNTAJDoH8ENJMwFXk0aWGgwcmDvbT5bUXr00zmkEqkiiHZsD+HXuJQBAvgq5DvgKcC6pG9Y40i3KkUQbKOpIW5ztNyVdSvpRPFAStm/Pq+8h3dpYVneXSaSGpBVJvQmOyaXobUixtpdMozW5E7avkTSF1L2pzfZF+bzdI2lZ4Pu2GzbPV/iiSKTTANsTJP2dlDCPkHQ2qT/ricDhJTQsLUBqAJnFab6nGYGVJf3Y9u9y99stgP+TdLTtTxoZX6uyfV3+ITom/2BelFe9BUxSDIVXmkikLSrXKb4LTHIyQdK5pDrIfUm3Kx6eW/IbWSe6OekGhdeAeSVdCZxGmo1y/xzLybl3wfqku3KatnW+2di+VtKnwEhJi5DGANgB2DWSaHmisakF5YajE4CDnO6d/6wFPK/vB3ya+2s2MomuTepgP5zU6DE3qe7uelJvhuVJAx0/avvXZXUTmxZIWp50Q8BHwIXOsxiEckSJtAXllvePSQN+7F55y1/xUrnBl/Wrk+YtekhpaudnJG1HmnvpA9vHSpqBNHXynE4zgoapYPsRUmNiaALRat8Ccsd1JM2T72qBdPn8nqS587qGjxZfiK/9vRfg85k9P8q9BV4kzRCwce5Peg/ww0iiYVoSibSJSZpFacizKZJWJM2T/nNJR5IG/ViSNKxbqQN7FN7778A3JK2YlzlXM7xBqgf92PaHLmHK5BB6U1zaN7dVgW0l3URKmGeQBvX4A6mU92Vgb0l35JJf2e4jDR+4fa6bHQ1MkbQGqR9kv1KjC6GXRGNTE8q3fY7LJdFrSTN6bmX7+ry+jTSFyLdIE+r9n+27Swr3C3Lse5AG9LiXNKDGNqT50h8rM7YQeksk0iakNG3J2aTZPQ8DlgVmJM1I+U7FtnuSRuLfvlm6v+SRkYaS4hpPGmnqmXKjCqH3RCJtUnngifZW+Y8lnQEsYnsDSQuTJmG7KN9T/yPStBIflRhyCNOtaGxqIu2t35L6O837swDwl3wpvzfwkqTHgStJDTgAHwL7RxINoTxRIm0S7R3nJX2LNKLPz2y/L+lq0u2W2+X1WwMv236guF+JoYcw3YtE2kRy6/ZI0gAUdxeWXw7MBGzcnjQjgYbQPOLSvkSSBucxJdsNAy6wfbekPrkPJra3IM/42b5hJNEQmkf0Iy1JrvdcFnhZ0mxOM0GOJ40tCelq4RNJqwKv2d6srFhDCLVFibQktqfYvhr4N/BXSeuT5iHfUNJWwDySVgD+RJp+I4TQpKKOtASFhqV1SSPGt5E61v8CmAE4AnifNM/7b21fWVqwIYROxaV9CXISXQH4JbAX8C/SvfPHkeZe2ixP0zG77ReiYSmE5haJtEGKyTB3qN8LeNH2E3nZFaQR7k+SdLzta0gjn0fDUghNLupIGyBP/rZafv5V0oyP44BBkjaBNF0IaYK4P5NGlw8htIioI22APJDHZqSpNZYmDYD8KenWztmBm2zflLeNeXdCaDFRIm0A26+S+oFuCdxve7ztt4DzgAnAZoWSaSTREFpMJNJeVLh3fkngb8BOwDOSjpU0j+2XgGtJgx7/p7xIQwj1iEv7XiZpI9Jtn9+2/aiktYBNSYONPEy6W2lELrWGEFpQlEh7kaQFSdOD7Gj7UQDbtwNX5U2OBx6MJBpCa4sSaS8odLhfCDjR9jZ5+Uy2P5TUL9/+OY/t/0Y/0RBaW5RIe1BhNs1Z879jgfkkHQCQk+j6wMn5XvvX8vJIoiG0sOiQ30MKpdANgR9JehB4BdgPOCp3wr+VNHXIEZVz0YcQWldc2vcgSWsCp5Mmf9uHNM/SrsAg4FDSDKD32r4uLudDmHZEIq1D7mg/CHg8z/i5Lem2zknA74Gtbb8oaZDtNwr7RRINYRoSdaT12QI4FVg+v34fGEWaf36DnEQ3BPaV1F5vGnWiIUxjIpFOBUkLS9rB9h9IY4geKWkocDvwd+CxvN2awInAA7YnlRZwCKFXRSLtJkmLA5e2v7b9K+Bu0hiiS5AGHXkBuJ7UsHSo7asLLfohhGlM1JF2g6SvkRqTzrN9dp5TaWnbD0s6gjR1yDG2H5LUH8D2e1EnGsK0LUqkXZST5pXAxJxE+5BKnWsB2D6KdMvn8ZJWsv2e7ffyukiiIUzDoh9pF+U7kYYD10jamzQU3qO2Ty5s8ytJH5YWZAihFHFp3025Uekm4J+2VyssXxVYzvaI0oILIZQiLu27yfZo0vzzS0j6PkCem/5M0oygIYTpTJRIp1IumV5LGmd0aeC4PM9SCGE6E4m0DpJWAm4BdrJ9ecnhhBBKEom0TpL6RxenEKZvUUdav7hjKYTpXJRIQwihTlEiDSGEOkUiDSGEOkUiDSGEOkUiDSGEOkUiDSGEOkUiDSGEOv0/kWrSkyc2LwgAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -1316,16 +1316,16 @@ " Steel-Asia\n", " POSCO\n", " KR7005490008\n", - " 2.2 delta_degree_Celsius\n", - " 53.86706409932146 percent\n", + " 2.21 delta_degree_Celsius\n", + " 81.52710143203362 percent\n", " \n", " \n", " 1\n", " Steel-Asia\n", " NIPPON STEEL CORP\n", " JP3381000003\n", - " 2.25 delta_degree_Celsius\n", - " 46.13293590067853 percent\n", + " 2.26 delta_degree_Celsius\n", + " 18.472898567966386 percent\n", " \n", " \n", "\n", @@ -1333,12 +1333,12 @@ ], "text/plain": [ " group company_name company_id temperature_score \\\n", - "0 Steel-Asia POSCO KR7005490008 2.2 delta_degree_Celsius \n", - "1 Steel-Asia NIPPON STEEL CORP JP3381000003 2.25 delta_degree_Celsius \n", + "0 Steel-Asia POSCO KR7005490008 2.21 delta_degree_Celsius \n", + "1 Steel-Asia NIPPON STEEL CORP JP3381000003 2.26 delta_degree_Celsius \n", "\n", - " contribution_relative \n", - "0 53.86706409932146 percent \n", - "1 46.13293590067853 percent " + " contribution_relative \n", + "0 81.52710143203362 percent \n", + "1 18.472898567966386 percent " ] }, "execution_count": 21, @@ -1417,7 +1417,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAICCAYAAACHlRq/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABtt0lEQVR4nO3dd3zV9fXH8dcJeysyVIZXkSGoKFDFCVpatXEv3KNaa+uv7raptRVHJbXaqrWuurHWvWOdVbAqKCggIFMvsjdhh4zz++P7jV5CQi5J7v3e5L6fj8d95H73uTd3nPuZ5u6IiIiISHrlRB2AiIiISDZSEiYiIiISASVhIiIiIhFQEiYiIiISASVhIiIiIhFQEiYiIiISASVhIpI1zGyqmQ0N748wsyfr8NzXmdlDdXU+EWn4lISliZnFzWxYFl77AjP7XxTXlsxkZmeZ2XgzW2dmi8zsP2Z2aC3P+ZiZ3VLdfu7ez90/qM21wusNNbP5Fc59q7tfXNtzi0j2UBImImljZlcDdwK3Ap2B7sC9wAkpvm7jVJ5fRKQmlISlWXnJkJndbmarzOwbMzsm3DbczMZX2P8qM3s1vN8sPO5bM1tiZvebWYtwWwcze93MVpvZSjP70MxyzGwUwRfda2HJw2/MLGZmbmYXmtm8MI5LzewHZjY5PMc9FeL4qZl9Fe77lpntlrDNw+Nnhcf+wwJ7AfcDB4XXXh3u/xMzm2Zma81sgZldm8KnXDKEmbUDbgIuc/cX3X29uxe7+2vu/uvw9X2nmS0Mb3eaWbPw2KFmNt/MrjGzpWEJ2oXhtkuAs4HfhK+z18L1cTP7rZlNBtabWeNKSoWbm9kz4WvxczPrnxCvm9meCcuPmdktZtYK+A+wa3i9dWa2a8XqTTM7Pqz+XG1mH4Tvh/JtcTO7Nny/FYYxNA+3Vfpervv/iIhETW/saBwIzAA6ALcBD5uZAa8Bvc2sZ8K+ZwFPhffzgV7AfsCeQBfgj+G2a4D5QEeCEobrAHf3c4FvgePcvbW731Yhjp7AcILSid8Dw4B+wOlmNgTAzE4Iz3dyeP4PgX9XeEzHAj8A9gVOB45y96+AS4FPwmvvEO77MPBzd28D7A38N8nnTeq3g4DmwEtVbP89MJjg9d0fOAC4PmH7zkA7gtf9RcA/zGxHd38Q+BdwW/g6Oy7hmDOBXGAHdy+p5JonAM8B7QneZy+bWZNtPQh3Xw8cAywMr9fa3Rcm7mNmvQjeI1cSvGfeIPgh1DRht9OBo4HdCd43F4TrK30vbysmEamflIRFY667/9PdS4HHgV2Azu6+AXiF4IuDMBnrA7waJmmXAFe5+0p3X0tQpXNGeM7i8Dy7haULH3r1E4Pe7O6b3P1tYD3wb3df6u4LCBKt/cP9LgVGuvtX4RfZrcB+iaVhQL67r3b3b4H3Cb5Iq1IM9DWztu6+yt0/ryZOaRh2ApZXkQxBUJp1U/gaXAbcCJybsL043F7s7m8A64De1Vzzbnef5+4bq9g+wd2fd/di4K8ESeLgZB/QNgwHCtz9nfDctwMtgIMrxLbQ3VcS/ADbL1xfk/eyiNRDSsKisbj8Tph4AbQO/z5FmIQRlIK9HO7TEWgJTAirKVYDb4brAf4CzAbeNrOvzSwviTiWJNzfWMlyeUy7AXclXHclYAQlEls9JmBDwrGVOQX4CTDXzEab2UFJxCr13wqgg1XdPmtXYG7C8txw3XfHV0jgqnudAcxLdru7lxGUQO1a9e5J2+KxhOeeR3LvmZq8l0WkHlISlnneATqa2X4EyVh5VeRygsSon7vvEN7auXtrAHdf6+7XuPsewPHA1Wb2w/DY2v6KnkdQfbhDwq2Fu3+cxLFbXdvdP3P3E4BOwMvAs7WMT+qHT4Ai4MQqti8kSPjLdQ/XJaOq13h1r/1u5XfCdlddE665geCHT7mdt+O8WzyWsCS7G7CgmuOqey+LSAOiJCzDhFUXzxH8Gm5PkJSV/5L+J/A3M+sEYGZdzOyo8P6xZrZn+GFfCJQCZeFplwB71CKs+4HfmVm/8FrtzOy0JI9dAnQtbwtjZk3N7Gwzaxc+1jUJcUoD5u6FBG0Y/2FmJ5pZSzNrYmbHmNltBG2orjezjmbWIdw32XG8avoaH2hmJ4elc1cSJIljw20TgbPMrJGZHQ0MqXC9ncLOBpV5Fsg1sx+GbcyuCc9d7Q+Xat7LItKAKAnLTE8RNJB/rkL1y28JqinGmtka4F2+bxPTM1xeR1DicK+7vx9uG0nw5ba6Jj0R3f0l4M/A0+F1pxA0TE7Gf4GpwGIzWx6uOxeIh+e6lKAtkGQBd78DuJqgwf0yglLW/yMoEb0FGA9MBr4EPg/XJeNhgnaGq83s5e0I6RWC9lurCF6XJ4c/DgCuAI4DVhO8Rr87r7tPJ0gavw6vuUUVprvPAM4B/k5Qin0cQeeYzUnEtK33sog0IKb2niIiIiLpp5IwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJQOOoAxAREUm1CRMmdGrcuPFDwN6oACJblAFTSkpKLh44cODSqIOpjJIwERFp8Bo3bvzQzjvvvFfHjh1X5eTkeNTxSOqVlZXZsmXL+i5evPgh4Pio46mMfg2IiEg22Ltjx45rlIBlj5ycHO/YsWMhQelnRlISth3MbAcze97MppvZV2Z2kJk9Y2YTw1vczCaG+x5iZpPNbLyZ9Uw4/m0z0/MuIpJeOUrAsk/4P8/Y71xVR26fu4A33f1UM2sKtHT34eUbzewOoDBcvAb4CRADLg2XrwdudfeytEYtIiIiGUdJWJLMrB1wOHABgLtvBjYnbDfgdODIcFUx0DK8FZtZD6Cbu3+QvqhFRKQysbyCgXV5vnh+7oTq9mnUqNHAnj17bixfPvnkk1feeuutiw844IDet99++7zDDz98w/Zc8+OPP24xb968psOHDy+sbPuYMWNaPvLIIzs99thj86o6x5AhQ/Z84YUXvgF46KGH2ufl5S1L9vqvv/56mzvuuKPz+++/P7t83SmnnBI79thjCy+88MJVN910U6errrpqeZs2bcoSr9WhQ4fSli1b7r9hw4Yv4vF4k0svvbTbm2+++XXFx/Ovf/2r3dSpU1vceuuti5ONqb5REpa83YFlwKNm1h+YAFzh7uvD7YcBS9x9Vrg8EngC2AicC9xOUBImIiJZqFmzZmXTp0+fVlfnGz9+fMvx48e3qiwJKy4u5vDDD99QXWI3evTo2QAzZsxo+vDDD3faniSsOg888EDnn/3sZyvLk7DyayWKxWLFb7755tew9eM5++yzC/m+dqlByth60gzUGBgA3Ofu+wPrgbyE7WcC/y5fcPeJ7j7Y3Y8A9gAWERSYPWNmT5pZ5zTGLiIi9cCLL77Ydr/99uvTt2/fvY455pg9CgsLcwBGjx7dcv/99+/Tu3fvvvvss89eK1asaDRy5MhdX3vttR379OnT95///OeOV1999a4nnnji7gMGDOhz8skn7/7666+3OeKII/YEKCwszDn11FNjvXr16turV6++jz322A4AXbp02WfRokWNr7nmmq7z5s1r1qdPn74///nPu5500kmxUaNG7VAe1/HHH7/7k08+uUMlIVfqlltu6bR06dImQ4YM6XXggQf2SrxW4n4zZsxo2rNnz36bNm2yio/n7rvv3um8887rDrBw4cLGRx11VI+99957r7333nuvt99+uxVAQUFB6z59+vTt06dP37322qvvqlWr6lVeU6+Cjdh8YL67jwuXnydIyjCzxsDJwDMVDwqrKa8HbgZuAH4D/BO4PA0xi4hIhigqKsopTxjKE43E7YsWLWp866237jJmzJiZ06ZN+2rAgAEbbr755s6bNm2ys88+u8edd9757YwZM6aNHj16Rtu2bUt/97vfLTzuuONWTZ8+fdrPfvazVQCzZs1qPmbMmBmvvfbaN4nnzsvL26Vt27alM2fOnDZz5sxpubm5axO333HHHfO7detWNH369GkPPPDA/Isvvnj5448/vhPAihUrGk2YMKH18OHDVyf7WK+//vqlnTp1Kh49evTMcePGzaxu/+bNm3tlj6fcz3/+825XX331kilTpnz10ksvzbn00ktjYdw733333XOnT58+bezYsdNbt25dr9pcqzoySe6+2MzmmVlvd58B/BAoL1YeBkx39/mVHHoe8Ia7rzSzlgSDx5URtBUTEZEsUV115AcffNBqzpw5zQ844IA+AMXFxTZw4MB1kydPbt6pU6fiIUOGbABo3759lYnG0Ucfvbp169Zb9QIdM2ZM26effvrr8uWOHTuWbivW3NzcdVdcccVuCxcubPzkk0/umJubu6pJkyZb7GNmlfY2rWp9bXz00UdtZ82a1aJ8ed26dY0KCwtzBg8evO7aa6/tdvrpp68888wzV/Xo0UNJWAP2K+BfYc/Ir4ELw/VnkFAVWS5Mui4Afhyu+ivwBkGD/rNSHayIiNQf7s6hhx66pmIp1qefftqiqmMqatWqVZ0lIcOHD1/xz3/+s/0LL7zQ/tFHH41X3N6pU6eSwsLCLfKIVatWNe7YsWNJXcVQzt35/PPPv2rZsuUWCd6tt966+MQTTyx85ZVX2h122GF9CgoKZu2///6b6vr6qaIkbDu4+0RgUCXrL6hi/w3AEQnLHwL7pCi8SsXyCgzYiaDkrXl4awY4UAqUhH9XAkvi+bkaR0eyQvjeaAvsALQL/0LQEHh1eFuj94Sky9ChQ9dfc8013adMmdJs7733LlqzZk1OPB5vsu+++25aunRpk9GjR7ccMmTIhlWrVuW0bt26rG3btqXr1q1LqlnRkCFD1vztb3/r9Mgjj8wDWLZsWaPE0rB27dqVrl+/fotzXXrppcsPPPDAvTp06FA8cODArRKbvffeu2jJkiVNPv/88+YDBgzYNHPmzKbTp09vMXjw4I0ArVq1Ki0sLMzZZZddknr823o8hx566JqRI0d2uvnmm5dA0DP04IMP3jh16tRmBxxwwMYDDjhg44QJE1pOmTKluZIwSavwy6QrsCfQM/xbfutB8lWfm2J5Bd8Cc4F4eCu/Pyeen9tguwlLwxLLK8gheP3vF976AO35PtnagSABq+4LrCyWV7CUoE3ovPD2LTAeGBfPz603H/aypWSGlKhr5W3CypePPPLIwnvvvXdB+fKuu+5a8sADD8TPOOOMPTZv3mwAN9xww4J999236F//+tecyy+/vPumTZtymjdvXjZmzJiZxxxzzNrbb799lz59+vS95pprFm3r2iNHjlx04YUXdu/Zs2e/nJwcv+666xaef/75q8u377zzzqUDBw5c17Nnz35HHnlk4QMPPDC/W7duJT169Nh03HHHra7snC1atPBHH3306wsvvDBWVFSU07hxY//HP/4xd6eddioFOP/885cfffTRvTp37rw5mXZh23o8Dz744LyLL764e69evfqWlpbagQceuPbggw/+9rbbbuv08ccftzUz792798ZTTz21XvWmNHf9yKtvYnkFjYCDgKMIqjr3JSjhSrU5wHvAf4H/xvNz66wrs0htxPIKdgAOIRjL7xCgP9A6xZctIkjGxgAfAh/F83PXpPiaUkOTJk2K9+/ff3nUcdQna9euzenbt2/fiRMnflWeWNVHkyZN6tC/f/9Y1HFURiVh9UQsr6A7QdJ1NEGngHYRhNEjvF0CeCyvYApBQvYeMFpfQJJOsbyCvsD5BO+JvUl/b+9mBAnfIcDvCErNJhEkZB8C78Xzc1dt43iRjPXyyy+3+eUvfxm79NJLl9TnBCzTqSQsg8XyCsoTnuOAvSIOpzqlwH+A+4H/xPNz61UPFakfYnkFOxJ0armAStpnZpjNwGvAY8Cb8fzcOm+sLMlTSVj2yuSSMCVhGSZs3/VjgnHEjgEs2ohqZC7BWGgPxfNzl0QdjGzNzHqz5bh2ewB/dPc7zexXwGUEiXWBu//GzA4B7iNILM5091lmtgPwLHB0KudDDavfjyZIvI4jKIGqbxYDTwL3x/Nz50QdTDZSEpa9lIRJtWJ5BW0IvmT+D+gVbTR1phh4haB07L/qZZaZzKwRsAA4kCAZ+z2Q6+5FZtbJ3Zea2YsEPwxiwEnufo2Z3Q68nqr5UGN5BT0JSoLPBpLrXpX5yoAC4O54fu67UQeTTZSEZa9MTsLUJixisbyCPQm+3C4A2kQbTZ1rApwa3mbG8gpuBUapqjLj/BCY4+5zzewvQL67FwG4+9Jwn7RNSB/LK9gNGEEw52qjuj5/xHIISvOOi+UVTAVujefnPhVxTCISEZWERSSWV7ATwRfNpWRXMvwlkBfPz30j6kAkYGaPAJ+7+z1mNpGg9PJoYBNwrbt/Zmb7EZRoJk5I/4eECetrLZZX0Jlgiq9LgKZ1dd564CPgV/H83C+iDqQhU0lY9lJJmHwnllfQlGDk/ev5fnDIbLIPUBDLK/gAuCKenzs54niyWjj7w/EEvfsg+ExoDwwGfgA8a2Z7hAMVDw6POZyECekJSsmucfcatf+L5RU0A64mqAZtVfNHU28dAoyP5RX8E/h9PD93RdQBZYOXxi4ZWJfnO2lw56TGHRs1atQO5513Xo/PP/98anWDit50002drrrqquVt2rRR7UEDpQm80yiWVzAEmERQirBDtNFEbijweSyv4K5YXkEUw21I4BiCUrDyBGo+8KIHPiVow9ShfOe6npA+lldwHDAFuJXsTMDK5QA/J6i2vyzsjCAN0NNPP91+wIAB65544on21e37wAMPdE52RHypn/TPTYNYXsFOsbyCR4EPCEbulkAjgi/vGbG8gjOiDiZLncmW856+TDjVlpn1IqgWTKzC+W5CeoL2YTWakD6WV7BrLK+gAHiVYGR7CbQH7gEmxPIKDo86GKlbhYWFOZ999lnrRx99NP7SSy+1B3j99dfbHHHEEd+9B84777zud99990633HJLp6VLlzYZMmRIrwMPPLAXwAMPPNC+V69efXv27NnvF7/4RReAkpISTjnllFjPnj379erVq++NN97YKZpHJzWh6sgUi+UVHAM8QUJpgmylM/DvWF7BkcDlmgomPcysFfAjghKYco8Aj5jZFILhKM73sOFoXU1IH8srOIIg8etcy4fQkPUHRsfyCp4EfhnPz10bdUBSe0899dQOQ4cOLdx3332Ldtxxx5IPP/ywyh8v119//dL77ruv8+jRo2fusssuJfF4vMmIESO6TJgw4auOHTuWHHbYYb1GjRq1QywW27xo0aIms2bNmgqwfPlylaLWIyoJS5FYXoHF8gr+CLyOErBk/Qz4OBykVlLM3de7+07uXpiwbrO7n+Pue7v7AHf/b8K2De5+hLsXh8sfuvs+7j7Q3WdUd73wPfE74B2UgCXrHIL2YntHHYjU3rPPPtv+zDPPXAVwyimnrBw1alS1VZLl/ve//7UaPHjw2l133bWkSZMmDB8+fOXo0aNb9+nTp2jevHnNzj///G7PP/982x133FGj29cjSsJSIGzj9ApwI3qOt9f+BG3FTo46EKk74dyOrxC0/dIv9e3TCxgXyys4N+pApOaWLFnSaOzYsW0uu+yy3bp06bLPPffcs/Nrr722Y+PGjb2s7Pt290VFRds1QHfHjh1Lp0yZMu2II45Ye//993c844wzYnUdu6SOEoQ6Fv5i/YxgLCCpmbbAC7G8gjtjeQVNog5GaieWVzAA+By9J2qjJfBELK/gH7G8AjUjqYdGjRq140knnbRy4cKFXy5YsODLxYsXT+7atevm0tJSZs+e3WLjxo22fPnyRv/73//alh/TqlWr0sLCwhyAww47bP24cePaLFq0qHFJSQnPPfdc+6FDh65btGhR49LSUi644ILVI0eOXPDll19uV/tMiZbezHUollcwHHiY7O7lVZeuAAbH8gpOi+fnzos6GNl+sbyCS4C7qZ9TDWWiXwI9w/dEYbV7S5WSHVKirjz33HPtf/3rXy9OXHfCCSeseuqpp9ofd9xxq/r06dOva9euRf369dtQvv38889ffvTRR/fq3Lnz5nHjxs284YYbFgwZMqSXu9uwYcNWn3POOas/+eSTFhdddFGsrKzMAG666ab56XxcUjsarLWOxPIKbgN+HXUcDdRc4Ih4fu43UQciyQmHWLgfuDjqWBqoaUBuPD83HnUg9YUGa81emTxYq6oj60Asr+BulICl0m7AB7G8gj2iDkSqFyZgo1AClkp9CdqJDYg6EBGpOSVhtRTLK/gLwQj4klrdCRIx9ZzMYGF7pacIxh+T1OoEvBnLK+gddSAiUjNKwmohlldwC3Bt1HFkkW4EYydpcM8MFCZg/wZOjzqWLNIReDuWV9Al6kBEZPspCauhWF7BHwjmupP06kKQiPWKOhD5XiyvwIDHgFMjDiUbdSdIxJIec0pEMoOSsBqI5RX8Brgp6jiy2K4EVZOqhskcfwPOjjqILNYXKIjlFWh4ApF6REnYdorlFVwO/DnqOIRdCL50NPl3xGJ5Bb8nGE5EojWYYHw9ja0nUk9onLDtEM5t+Leo45Dv9CAYwPLEeH6uxlqJQCyv4DzglqjjkO8cDTwWyys4R++JaoxoN7Buz1eY1Lhjv/3tb3d+4YUXdsrJyfGcnBzuvffeuf/73/9aXXXVVcvbtGlTVv0ZtnbKKafEjj322MILL7xwVU2Ol+ioJCxJsbyCzsC/0HOWaY4Hfht1ENkollfQE7g36jhkK2ehH4sZ6d1332311ltv7fDll19Omzlz5rT3339/5h577LH5gQce6Lxu3Tp9t2Qh/dOTEMsryAGeBHaOOhap1C2xvIIjog4im4RVXk+h2SEy1RWxvILTog5CtrRgwYIm7du3L2nRooUD7LLLLiVPPvnkjkuXLm0yZMiQXgceeGAvgBdffLHtfvvt16dv3757HXPMMXuUT1304YcftvzBD37Qu1+/fnsdeuihPefOnauq53pOSVhyrgOGRR2EVKkR8LS66afVjcCgqIOQbXogllfQNeog5HsnnnjimoULFzaNxWJ7n3POOd0LCgpaX3/99Us7depUPHr06Jnjxo2buWjRosa33nrrLmPGjJk5bdq0rwYMGLDh5ptv7lxUVGSXX35591deeWXO1KlTvzr//POXX3vttfrMq+fUJqwasbyCw4ERUcch1eoEPBvLKxgaz88tjjqYhix8T6gKOPPtCIyK5RX8MJ6fW6O2RlK32rVrVzZlypRpb775Zpv33nuvzfnnn9/jj3/84xZzPX7wwQet5syZ0/yAAw7oA1BcXGwDBw5cN3ny5GazZs1qceSRR/YCKCsro2PHjvqsq+eUhG1DLK+gI8Hgk42ijkWScjBwG3BV1IE0VLG8gh0IpiRSKXr9MJRgQOnbIo5DQo0bN+bYY49de+yxx67dd999N44aNWqnxO3uzqGHHrrmtdde22Ku3E8//bTFnnvuuXHixInT0xuxpJI+SLftcYIxqaT+uCKWVzA46iAasPsJBgeV+uNGDW6cGSZNmtTsyy+/bFa+/MUXX7To2rXr5latWpWWt/saOnTo+vHjx7eeMmVKM4A1a9bkTJ48udm+++67aeXKlY3ffffdVgBFRUU2fvz45tE8EqkrKgmrQiyv4AzgmKjjkO1mwH2xvIJB8fzc0qiDaUjC4SiGRx2HbLfmwD/DqnoNW1EuySEl6tKaNWsaXX755d3XrFnTqFGjRh6LxYoef/zxuY888kj7o48+ulfnzp03jxs3buYDDzwQP+OMM/bYvHmzAdxwww0L9t1336Knn356zuWXX9597dq1jUpLS+0Xv/jFkkGDBm1K9+OQumPuek9WFI46PQNQo9b666p4fu6dUQfRUMTyCnYFpgNtoo5Fauzn8fzcB6MOIiqTJk2K9+/ff3nUcUj6TZo0qUP//v1jUcdRGVVHVu46lIDVdzfF8go0pEjdGYESsPrutlhewS5RByEi31MSVkEsryAGXBN1HFJrbQiGUZBaiuUV9AF+GnUcUmvtgLyogxCR7ykJ29qNBG0opP67KJZX0DfqIBqAkaiHcENxcdjrW0QygJKwBLG8gn7AOVHHIXWmEZpsvVbCnqYnRh2H1JmWwJVRByEiASVhW/oTek4ammNjeQUHRh1EPXZD1AFInbssllfQNuogREQJx3dieQX7ASdEHYekxGVRB1AfxfIK9geOjjoOqXPt0HtCJCNonLDvXRJ1AJIyp8fyCq6O5+eqe/r2uS7qACRlrorlFdwZz8/dGHUgkXn3dwPr9HzDRlY77ticOXOaXHLJJd1nz57doqysjGHDhhXed99985s3b+5jxoxp+cgjj+z02GOPzbv77rt3Gj9+fKsnnnji24rneOqpp9r94Q9/6JqTk8PRRx+9+u9///uCqq73/PPPt73xxhu7rFu3LqdZs2beo0ePTXfeeef8nj17bq7tw5W6oZIwvhsX7Oyo45CUaQZcFHUQ9Uksr6A3cHLUcUjKdAR+FnUQ2aSsrIwTTzxxz+OPP3713Llzp3zzzTdT1q9fn3PFFVd0ATj88MM3PPbYY/OqO89vf/vbbgUFBbNmzZo19bLLLltW1X6fffZZ82uuuab7448//s0333wzdfr06dPOOuusFbNnz25al49LakdJWGA4oDYSDdulsbwCvd6Tdyn6fGjoro3lFTSJOohs8dprr7Vp1qxZ2RVXXLECgjkk77///nnPPPNMh7Vr1+a8/vrrbY444og9qztPkyZNPB6PNwXo06dPlSVaf/rTn3a5+uqrFw0YMOC7EfXPPvvswmOOOWYdwB133NFh77333qt37959jzrqqB5r167NAXjkkUd27NmzZ7/evXv3HTRoUO/aPm7ZNn3IBvSLsOGLAblRB1EfxPIKDDgt6jgk5boBZ0UdRLb48ssvW/Tv339D4rr27duX7bLLLpunTZvWrKrjEpWWltKzZ89NP//5z2MzZszYZonWzJkzmx9wwAEbqtp+9tlnr5oyZcpXM2bMmNa7d++Nd999dweA/Pz8Xd5+++2ZM2bMmPbmm2/OTiYuqbmsT8LCYSkOijoOSYtfRh1APXEQ0CXqICQtNCRPPXLrrbd22meffTbcddddc4877rg9Fy5c2Hj06NEtjz766D22ddzixYsb9enTp28sFtv7j3/8Y2eACRMmtBg4cGDvXr169X3hhRd2mjp1anOAQYMGrTv77LNjd9xxR4eSkpJ0PKyslvVJGCoFyyZHxfIKekQdRD1wetQBSNocEcsr6BB1ENlg77333jhp0qSWietWrlyZs2jRoqZ9+/YtSuYc7777btuhQ4euO/HEE9f+5je/WXTUUUf1fPjhhzsMHz58VcV9e/XqtenTTz9tCbDzzjuXTp8+fdp55523bN26dY0ALrnkkt3vueeeb2fOnDntt7/97cKioqIcgKeeeurbW265ZeG8efOaDhw4sO/ixYs1UHMKZXUSFssraAacG3UckjYGnBd1EJksrIo8Neo4JG0aoQ4YaXH88cev3bRpU84999yzE0BJSQm//OUvu5122mnL27RpU5bMOfbdd9+No0aNal9aWsrFF1+8avfdd9/0yiuvtD/ttNNWV9z3uuuuW3zHHXfs8vnnn383A8yGDRtyEu937969uKioyJ5++un25eunTp3a7Mgjj1x/5513Ltxxxx1Lvv76azXkT6FsH6IiF2hf7V7SkPwIDUC6LaqKzD6nAQ9GHUTaJTGkRF3Kycnh5Zdfnn3JJZfs9pe//GWXsrIyjjzyyMK77767yiEmKrr11lsXXXTRRd169erVr3nz5mUHHXTQ2nPOOWfZSSedtMebb745p1Gj7wutDjjggI233XbbvPPOO2/3devWNWrfvn1Jly5div70pz8tBMjLy1t4wAEH7NW+ffuSAQMGrCsvIbvqqqu6xuPxZu5uhx566JrBgwdn7zAmaWDuHnUMkYnlFfwDtRPKNqXATvH83MKoA8lEsbyCO4Eroo5D0qoU6BDPz10ddSCpNGnSpHj//v01VmAWmjRpUof+/fvHoo6jMlldHQkMjToASbtGwBFRB5GJVBWZtRoBw6IOQiQbZW0SFssr6Aj0jToOicSPog4gQ6kqMnsdFXUAItkoa5MwVAqWzZSEVe74qAOQyGRDElZWVlZmUQch6RX+z5Pq+BAFJWGSjXrG8gp2izqIDPSDqAOQyHSL5RU09JqBKcuWLWunRCx7lJWV2bJly9oBU6KOpSrZ3DtyaNQBSKR+BDwUdRCZImwPNiDqOCRSg4BpUQeRKiUlJRcvXrz4ocWLF+9NdhdAZJMyYEpJScnFUQdSlaxMwtQeTIAjURKWqAewQ9RBSKQa9DyBAwcOXIqq3CXDZOuvgcOiDkAi16C/cGpgUNQBSOR6RR2ASLbJ1iRMX8CyzbnWstC+UQcgkVMSJpJm2ZqEdYs6AIncDrG8gh2jDiKD6IeJ9AzbBopImigJk2ym0rDvqRREWqDPRpG0UhIm2Wz3qAPIBLG8ghxgz6jjkIygZFwkjbI1CesedQCSEVQSFugGNI86CMkIqpYWSaOsS8JieQWtALUFElASVq5j1AFIxlBJmEgaZV0Shqoi5XtKwgJNow5AMkaPqAMQySZKwiSbdY46gAyhJEzKtYo6AJFsko1JWKeoA5CMoeQj0CzqACRj6LUgkkbZmIRl42OWyjWJOoAMoWRUyum1IJJG2ZiQZONjlsrpCyeg50HK6bUgkkbZOIG3RoQGbu72WUGvTs3aRB1HlDaX5ayB3KjDyASqggKu7fTZW4O6Nmtulr2fERtLc5boPSGSPtmYhGW9Q3fvOPbsxX/fJ2eX4+O03fnwqOOJ0PyoA8gQKv0ADsmZUbr/gkkd6HtMDo2a7hV1PBH5MuoARLJJNlbNbYo6gCjlGCUn9tu1o3nJrkx+8XBWxkdHHVOESqIOIEMoCQNm7HFpSy9c0JdPHurNvM/H4L4q6pgisDnqAESySTYmYRuiDiBKx/br+nGbzYuaW3kp6LQ3hrD4qw+ijSoyRVEHkCFUIg6sb717i+LGbaYCOcwdezjjHnXWLvkQ97KoY0sjJWEiaZSNSdj6qAOISrPGOWuH9Oi8V9t1s5dvsWH2+0OZNyHbvmwAlkUdQIZYGXUAmaC4tKx0/q7Hf/9clGxqz6QXDuPLV6ZTsnlahKGlk5IwkTRSEpZFzhqw++c5Zh3brp2xdquNc8cdxjcfjcW9OILQorI46gAyxKKoA8gExaVlpTN3/1lPB99iw5qFfRn7UJ/wh0pDT1j1nhBJo2xMwrLyC6dd8yZL9tllhx8AtFs7o7TSnRZOPpiZ703EfWNag4uOvnACC6MOIBNsLi3zjS123aW4cdsplWzOYe64wxj3qLFm8ZgGXGo8J+oARLJJNiZh3wLZkmR856cH7jnTzFoCtN4Qr/r/vmzmD5hWMBP3NWkLLjpKwgJZ+cOkoqKSsjKAeV1OqLpBfsmmHZn84uF8+fIMSoqmpi249Pk66gBEsknWJWHx/FwHZkcdRzrt2rbFnG47tDy4fLnFpsWtt3nAqm/7M/mlBbgv3+Z+9Z+SDyCen7sOyIake5s2l5QawKzYxb0ctl3StWbRXox9uC/ffvYh7ivSEmB6qCRMJI2yLgkLzYg6gHS6aPCeK8ysUflyk+I17as9aO3ivfjimbV4WUNOVBryY9teWfXDpDKbSsocYGOLXXYubtIumfGyjG8/O4xxjzRizaKGUkWpJEwkjZSENXB7dW43qX3LZgd8t8LLysxLdknq4A0rd2fCU6WUlcZTFF7UKmv7k61mRh1A1IpKSr/7PPx21xMLkz6wpGgHJr90OJNfmklJUX0e7LQIWBB1ECLZRElYA3fuoD22GAOqxabFS2x7BufctKYrn41qRWlxQ3vOVjBs5Lyog8ggWZ+EbQqrIwFm7X5R72qrJCtau7gPYx/em7mf/q+eVuXHGTayIZTmidQbSsIasEN37/hJiyaN+iWua1NxjLBkFG/oyKdP7FzPf+VXNDHqADJM1idhRSVl330ebmq+c+fNTXaoyevdmDf+UMY+0oTChaNxr7wncmZSVaRImmVrEtbgv3ByzIpP2KfbVtWO7dbNrFkD7NKidnz6eA82r59Q6+AywxdRB5BhJkcdQNQ2FZduUWr8bZeTkq+SrKi0qB1fvjyEyS/MpqSovjy3s6IOQCTbZGUSFs/PXU0Db/twXL+unzTOyYlVXN927Yyaz5dYVtKSz0btw8bCsbWJLUMoCUsQz8/9kizvqLCppLRR4vKs2EV7bXeVZEVrl/Zm7MP7MHfc/3DP9BkaPo46AJFsk5VJWOidqANIlWaNc9Ye3qNT38q2tV7/Te3+517WlAlP/YB1yz6s1XmipyRsa29HHUCUikpKm2yx3LxTx81NdqyLUixj3oRDGftwUwoXZHIV5QdRByCSbbI5CXsj6gBSJZyeqENl21puXNiy9lfwRkx87lBWzxtd+3NFYgHDRn4VdRAZ6K2oA4jSpuItkzCAuV1P2XqKr5oq3dyOL18ZwqQX5lC8aVKdnbduTGXYyKVRByGSbbI5CXsbqHnVXIZKnJ6oMk2KC6sfIyw5xpTXhrBsZn1MxP4TdQAZ6m1qW/1WjxWVlm3Va3h27MI+DnVbcrVuaS/GPdKf+Ccf4WWZkvh8EHUAItkoa5OweH5uIQ2wDUTi9ERbcSfHi5MbIyxZM94dwoJJo3H36nfOGA22FLQ24vm5K4CG0vFiuxWVlG6VhBU169hxc5MdU9MreP4XhzD2keasnj8a96h/EL6ZzE5mdoWZTTGzqWZ2Zbjuz2Y22cyeSNjvnPLtIlK1rE3CQg3qy7ji9EQVNStatsygeZ1f+JuPhjB33McZ8EWSjM3Au1EHkcGS+jJuiDaXlFX63pjb9dS6q5KsqHRzW6a8OoRJz38TYRXlRuC96nYys72BnwEHAP2BY82sPzDA3fcFNpvZPmbWArgQ+EcKYxZpELI9CWtQ1VIXV5ieqKI26+ekrupj/ueHMPuDCbgXpewadeN/DBuZui/V+i9r24UVlZQ1q2z97NiFe9V5lWRF65b1ZNwj/fnm44/xsiUpvdbW3mXYyI1J7LcXMM7dN3jwg2s0cCLQxMwMaAkUA9cCf3f34lQFLNJQZHUSFs/PnQzMjzqOurBX53aTdkycnqgS7dbWcIywZC356kCmvzkN93UpvU7tvB51ABluLLA66iCiUFxaVmk1flGzDh2Kmu6UnrG+Fkw8mLEPt2T1vHRWUb6W5H5TgMPMbKewycNPgA4ENQpfEAxxUggc6O4vpyJQkYYmq5OwUEHUAdSFitMTVabt2hmbUx7Iim/2Z8qrc3FflfJrbb9S4Omog8hk8fzcUhrw8C3bUurexKsYPmJu11PT98OitLgNU14bwsTn4hRvnJjiq20CXkpmR3f/CvgzQQeONwlmnSh199vcfT93vwa4GfijmV1sZs+a2fUpilukQVASBv+MOoDaOmyPTmMrTk9UmTbr51h1+9SJwgX9mPT88giqVarzFsNGZvWApEl6NOoAIlRptdzs3S7o6+nuTb1++Z6Me3Q/vv7oY7xscYqu8jTDRiY9lZm7P+zuA939cGAVCbOPmNn+gBFMC3eau58O9DCznnUdtEhDkfVJWDw/dwLwUdRx1FSOWfHxe3dNqsdjy40LW6Q6nu+sW9aTz/9dRFlpJk2S/UjUAdQTb5Kl8wh6FUnY5mY77VTUtEM00w8tnHQwnzzcmlXffkDdt7O6e3t2NrNO4d/uwMnAUwmbbwb+ADQBytumlhG0FRORSmR9Eha6M+oAaiqcnmi3ZPZtWrx6x1THs4WNhd0Z/2QTSktmp/W6lVsEvBJ1EPVBPD/XgfuijiMK7lRZZR/vetr6dMayhbLi1kx9fSgTn/2WzRvraraHjxg2cnvP9YKZTSNoR3aZu68GMLMTgfHuvjBcN9HMvgSau3umDUwrkjGUhAVeAuZGHcT22tb0RJXJKSvaOZXxVGrz+p357In2lGyelvZrb+mfDBtZaXWSmT1iZkvNbErCur+Y2fRw/KOXzGyHcP0h4brx5dUsZraDmb1tZg3p/fQIVZQKNWRl7puq2jYndn6/tFdJVrR+RQ8+fXR/vv7wE7ystlXr21UKBuDuh7l7X3fv7+7vJax/2d1HJCxf6+77uPvZtYxRpEFrSF8aNRY2Rr4n6ji211kDdp9Q1fREFTXdvHKlQetUx1Spkk3t+ezxbhTX2S/47VUEPLCN7Y8BR1dY9w6wdzj+0Uzgd+H6awh6hV0JXBquux641d0bzGjz8fzcVcCoqONItzL3KkvCNjdt376oaYfMKNVZ+OVBfPJwG1bOrWkV5QLgxboOS0S2j5Kw7z0EZPLQClsIpyfa5pAUidqs+zra6VFKi9vw6RN7sWntpxFc/Z8MG7mwqo3uPgZYWWHd2/79EAFjga7h/WKCNi4tgWIz6wF0c/cP6jzq6N1GqsfHyjClZdseFiLebXjmlA6WFbdmWsFQvnh2Hps3fL6dR99XVcmwiKSPkrBQPD93NfB41HEka5vTE1Wi7bqZq1MYTnK8tDnjnxzA+hXp7AixCbi1luf4Kd8P7DsSeIKgZOwe4E8EJWENTjw/dw7wTNRxpFNJWdUlYQBzdjuvnweJeObYsGIPPn1sAHPGfIKXVfljI0ER8GCqwxKR6ikJ29Jd1INf/tVNT1SZtmtnZMhI9t6YL545mMJFY9J0wftrMyyFmf2eoB3QvwDcfaK7D3b3I4A9CBr8m5k9Y2ZPmlnnOok6c4wE6tO8oLVSUla2zff/5qY77ripWafMqJKsaNGUg/jkoXasiH/ANqpVgUcZNnJZ2uISkSopCUsQz8+dRT34hVjd9ESVabMuEzoofsf48qXDWfHNBym+zgYgv6YHm9kFwLHA2V5hgvJwmpbrCbrl3wD8hmDMuctrer1MFM/PnUKSg3k2BMWlZdVW0cW7Da+y8X7kykpa8dUbQ/nimQVsXl/ZZOxrgD+mOywRqZySsK39kWAQwozUN4npiSrTauOC9I0Rlqyv/jOURVNHp/AK9zJsZI0GjDWzowkSq+PdfUMlu5wHvOHuKwnah5XRcMdEuop61F6yNopLq+9cMWe38/bJuCrJijas3J1PHx/I7NFj8bIFCVtuUSmYSOZQElZBPD93OXBj1HFU5ZwkpieqTNPNK9vVdSx1Ys7oIXw7/kPqvmfhIuCWZHY0s38DnwC9zWy+mV1E0N6rDfCOmU00s/sT9m8JXAD8I1z1V4L58+4E7qeBiefnfgv8Puo40mFzaWm1r8PiJu3abWrWeWIawqm9xVMH88lDO7Limw8Iph26K+qQROR7NfpCzwL/AH4GVDsVUDqF0xMNrsmxjco2JTWqfiS+/fQwijd+wh6HDsSsaR2d9XKGjSxMZkd3P7OS1Q9vY/8NwBEJyx8C+2x3hPXLPcBZwIFRB5JKm0vKkmr/9k33M4v6zrozxdHUkbKSlnz1n6E0anYsf1ia+vljRSRpKgmrRDw/twS4hAxqkLw90xNV1KR4TaFB27qOqU4t+vIgZrwzmcqr/rbXqwwb+XwdnEdC8fzcMuBiMr0arpaKkkzCvu5+9j5O1aPrZ6BX+MPSgqiDEJEtKQmrQjw/92MyaOqW4/t1/TjZ6Ykqar3+60ybSLtyy2cPYurrs3FPqgSrCmuBy+oqJPle2Ej/z1HHkUpFJaVJTXJf3KRdu43Nd87MXpJbWwv8KuogRGRrSsK2LQ+YH3UQzRrnrD2sR6caV422XTdrdR2Gk1qr5+3L5BcX417TxsPXM2xk5P+zBuwWYEbUQaTKppLkR6j5ptuZ9aUk7FJGFM6LOggR2ZqSsG2I5+euJegFF+nI0mcP2P3zZKcnqky7tdMzt0t9ZdYu6c0Xz6xLcuDJRO9SD6efqk/i+blFBO0lM6aqvi4VlZQm/Zn4Tfez9/Zg4NNM9gQjCp+KOggRqZySsGrE83PfB34d1fV3aN5k8d677PCD2pyjzbo59e8Lc8PK3Rn/Lygr/SbJI+YBZzJsZIOZvzFTxfNzP2Tbc3HWW5tKypL+TCxu0rbdxua7ZHKV5CxUNS+S0ZSEJSGen3snEU1mfOGBe87anumJKtNqw7xmdRVPWhWt3ZXPnmhDafH0avbcDJzGsJHL0xGWAMHYYZ9FHURd21Rcul09xr/ufnamzr+4GTiTEYVZMb6bSH2lJCx5lwCVjUCdMl3abf/0RJVptnlFZo4RlozijR349PFdKN40eRt7XcOwkePSFpMQz8/dBJwIbG+VcUbbVFK6XTNRfNP9rH08mJ8001zFiMK0fl6JyPZTEpak8EvnJGBpuq550YHbPz1RZRqVbqzf8xmWbm7HZ0/sSdH68ZVsfYphI9UOLALx/NyFBInYxohDqTNFJdtXElbSuHWbjc13zbQqyb8yovDeqIMQkeopCdsO8fzcecDppKGhfk2nJ6qoUcmG9Ya3r4uYIlVW0pLxo/qzcfUnCWs/Ihi7SiISz8/9DLiQBtJQv6ikbLsHC/66+9nJd6lMvReAa6MOQkSSoyRsO8Xzc0cTtIdJqXNrOD1RRa3Xf7O4Ls6TEbysCROeOpC1Sz8EpgLHMWxkgymFqa/i+bnPAFdGHUdd2FRS2mR7j/mm+5mZUiU5FjiXEYUNIiEWyQZKwmognp97D8EYYilx2B6dPmnepFGdTJnUdt2slXVxngySw6Tnu7B05o8ZNjJjJ1rPNvH83LuBP0UdR21tLinb7k4sJY1bt9nQokvUVZKzgOMZUagfJSL1iJKwGorn5/6ZYBTqOv3VGU5PtGtdna/d2ukN7UP5W+BIznqhQTUIbwji+bnXU8+HrigqKa1RT+Kvu58TZZXkNGAIIwprOsCxiERESVgthCViFwF1NjbV8Xt3/aSm0xNVps262Q1p3KwFwJGMKJwbdSBSpV8C9bZR+ObSshY1Oe6bbmfs69F0UJgEDGVE4aIIri0itaQkrJbi+bmPAmdRB431mzXOWXvYHp361j6q77Xa8G39HCNsa9OAwxhROCfqQKRq8fzcsnh+7mUEbcTq3Q+AzSVlzWtyXGnjVq03tOiW7irJz4AjVAImUn8pCasDYcPkU6jlFCa1nZ6oMs03L29bl+eLyFvAQYwoTHb0fIlYPD/3LuAEoF4NFlrq3tTda1S1OGe3c9PZIH4MMIwRhWoXKVKPKQmrI/H83FeBY6nhl05dTE9UmcYlGzrV9TnT7B9ALiMK10QdiGyfeH7u68ChBFNK1Sc1qlaMdz09XVWSjwE/0ntCpP5TElaH4vm57wIDgS+299i6mJ6oopzSTZugrE5L1tKoFPgVIwr/jxGFmTQOk2yHeH7uJOBAoLKBdjNSTYebKG3cstX6Ft1TWSVZClzDiMILGVG4OYXXEZE0URJWx+L5uTOBwcBdyR5TV9MTVdR6w9xFBlbX502DNQSlXxoJvwGI5+cuAoYAL0UdSzLcaz7m19epq5JcSlD69dcUnV9EIqAkLAXi+bmb4/m5VwLHAdVOKn3RgT1X1sX0RBW1WTe7Po4R9gGwPyMK34o6EKk78fzcDQTtJm8iDTNO1EaZe41LmeLdTu/vsKEu4wHeBQYwovD9Oj6viERMSVgKhW1i+hMkFpUKpidqWudtwQDarZ1e118GqbSOYHiDIxlR+HXUwUjdi+fnejw/9waCkuJtTcgeqTL3GnewKW3UouX6lrvVVZXkOuBSRhT+iBGFC+ronCKSQZSEpVg4yfEPgT9SSQlAXU1PVJm262bVl7ZU7wB7M6LwPk250vDF83MnAIOAEUBxtNFsrbTMa1VSN2e38+uiCcB7BO+Jej34rYhsm5KwNAjHTrqZoFTs7fL1dTk9UWVarZ+73ZMRp9ka4GeMKPyxBmDNLvH83OJ4fu6NwP5ARlWzlZTVvDoSIN711P4O62t4+ErgFwTtv/SeEGnglISlUTw/d1o8P/co4PhGZtPqcnqiyjQvWtY6leevhRLgYaAfIwofijoYiU48P3dqPD/3SOB0MmQoi5KyslqVIJc1at5iXcvdt7e6dRNwG9CDEYX3q0RYJDsoCYtAPD/3tSuG9OnfOCfnNmBxqq7TuGRdpo0RVgI8AvRiROHFjCicH3VAkhni+bnPAX2AG4FIByAtKa3ZYK2J5sSSrpIsA54geE/8lhGFq2t7bRGpP8xdP7ii9NLYJS0JGqRfDnSrq/NaWXHxCW/3a2SZkWiXAKOAW9ToXqoTyytoBZxL8J7YK93Xv2Zo3/913aHlobU5R07ppo3Hv7NvqUFVpdElwAvASEYUpnu6IxHJEJnwBZ3VThrcecNJgzvfDuwOnAZ8WBfnbbVh3qIMSMCKCEb37sOIwp8qAZNkxPNz18fzc+8H+gFHAW8Aafu1uLm0tNZzXpY1at5iXas9KquSXAn8GdidEYVn1CQBM7NHzGypmU1JWHeamU01szIzG5Sw/hAzm2xm482sZ7huBzN728yi/nwQyXop65kn2+ekwZ1LgeeB518au6Q/QSnAmUCLmpyv7bpZK4DudRfhdplI0ObrX5rbTmoqnp/rBB1Z3o7lFfQEfgVcSNWlS3Vic0lZnSR8s3c7v9H+024oX5wE3A88wYjC2g4d8xhwD0E1ZrkpwMlAxd6U1wA/AWLApeHy9cCt7l7vJlgXaWiUhGWgkwZ3ngRc9NLYJVcSTII8HPgxkHRvx7ZrZ6R74uRvgGeAp1W9InUtnp87C7g8lldwPXABQcJxCCn4DCuqfUEYAPO6nNhiv2kjbjL8GUYUTquTkwLuPsbMYhXWfQVgtlVTtGKgZXgrNrMeQDd3/6Cu4hGRmlMSlsFOGtx5LfAk8ORLY5e0AY4mGIX/x0DnbR3bdt3MVP/KXQ+MBf4HFDCi8LMUX0+EeH7uGuBu4O5YXkE7gvdCLsF7Y5vviWQVlZTWtCSsjOA98QrwyvGHxGZwyOq6CKk2RhKUmG0kaGd3O0FJmIhkACVh9USYkD0X3nhp7JLdCUYeHwwcBOwHNCnfv/X6eF1Pg7QY+Igg6fofMJERhRk9/Yw0bPH83EIS3hOxvIJewGHA4eHf3Wty3qLi0mTbSi0CPku8nTS4c0ZNFebuEwk+IzCzwwliNjN7hqCU7Bp3XxJdhCLZTUlYPXXS4M7fEFQB/hvgpbFLmgN7Az2APXO8uC3BtCe7Al2AHQgm8y6/VVRIME5T4u3b8O83jCiMp+7RiNRePD93JjCToD0isbyCNgQ9jrsBXau4v1X7sk0lZQZsJnhPFAKrgWXADOArYDrw1UmDOy9L6QOqQxbUU14PnAH8HfgNQTuxy4HfRxeZSHZTEtZAnDS48yZgfHiDwROrP2hEOyPoQWkq1ZKGJp6fuxaYFt4qFcsraEvQ1rI0vJVMmL+i+N7z98u46ZRq6TzgDXdfaWYtCapOywjaiolIRDROmIhIPWJm/waGAh2AJcANBENf/B3oSFByN9Hdjwr3bwkUAD9292IzOwy4l6C07yx3n5HuxyAiASVhIiIiIhHQYH0iIiIiEVASJiIiIhIBJWEiIiIiEVASJiIiIhIBJWFSK1VMJjzCzBaY2cTw9pNwvSYTFhERCemLL0JhAvK8mU03s6/M7CAz+3OYqDyRsN85ZnZlhKFuy2MEU8ZU9Dd33y+8vRGuK59M+EqCyYRBkwmLiEiWUhIWrbuAN929D9AfWAgMcPd9gc1mto+ZtQAuBP4RYZxVcvcxBGMUJUOTCYuIiIQ0Yn5EzKwdwRx3FwC4+2YzWwk0CacYaUmQtFwL/N3d69sI3v9nZucRjOB/jbuvQpMJi4iIfEclYdHZnWA+ukfN7Asze4hgGpE3gC8IJtotBA5095cji7Jm7iOYw3I/gsdxBwSTCbv7YHc/AtiDhMmEzexJM+scVcAiyTCzuJl9GbZ1HB+uq29NCEQkQ2jE/IiY2SBgLHCIu48zs7uANe7+h4R9HiKYXmQA8GNgsrvfEknA22BmMeB1d987mW1hSd9bfD+Z8HUEkwn/2N01mbBkLDOLA4PcfXm43A543t1/FL5f7wJmA68DR9fDEmwRSSOVhEVnPjDf3ceFy88TJFsAmNn+gAEzgNPc/XSgR3mvwkxmZrskLJ4ETKmwy3eTCRNUu2oyYamvymg4TQhEJM3UJiwi7r7YzOaZWe9wAt0fAtMSdrkZuARoAjQK12VcopI4mbCZzSeYTHiome0HOBAHfp6wf0uCdnA/Dlf9laAKdjNwVprCFqkpB942MwcecPcHzay8CcF7fN+E4OYogxSR+kHVkREKE5WHgKbA18CF7r7KzE4E9nP3EeF+twNHEVRHnh1NtCJiZl3cfYGZdQLeAX4V9hAu314vmhCISGZQEiYiUgNmNgJY5+63h8v7A/8HXA686O5HmdmjBOPgzYouUhHJVGoTJiKSBDNrZWZtyu8TlHQltne8GfgDGd6EQEQyh9qEiYgkpzPwUtAGn8bAU+7+JkDYhGC8uy8Mlyea2ZcE1ZGTIopXRDKcqiNFREREIqDqSBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMBEREZEIKAkTERERiYCSMJEMZWbrEm5lZrYxYfnsqOOrCTOLm9mwqOOQ2tP/UqT2GkcdgIhUzt1bl983szhwsbu/G11E22Zmjd29pL5fY3tkWjyQmTFVVB9iFEkHlYSJ1DNmlmNmeWY2x8xWmNmzZtY+3BYzMzezC81snpmtMrNLzewHZjbZzFab2T0J57rAzD4ys3vMrNDMppvZDxO2tzOzh81skZktMLNbzKxRhWP/ZmYrgBFm1sPM/hvGtdzM/mVmO4T7jwK6A6+FpXm/MbOhZja/wuP7roTFzEaY2fNm9qSZrQEu2FZMlTxXB5jZeDNbY2ZLzOyvCdsONbOPw+dknpldkPCYnzCzZWY218yuN7OcbTzmZmZ2u5l9G17jfjNrEe7fwcxeD6+x0sw+LD9XJbG6mV1uZl+Hz91fEvc1s5+a2Vfh//QtM9utwrGXmdksYFYl524ePocrwlg+M7PO1f2Pw+0/C6+71symmdmAyv6X4b7Hm9nU8BofmNleFf6vvzWzycB6M1MhgIi766abbhl+A+LAsPD+FcBYoCvQDHgA+He4LQY4cD/QHPgxsAl4GegEdAGWAkPC/S8ASoCrgCbAcKAQaB9ufyk8f6vw+E+Bn1c49lcEpeotgD2BH4VxdQTGAHdW9jjC5aHA/G081hFAMXAiwY/GFtuKqZLn7RPg3PB+a2BweH83YC1wZvi4dwL2C7c9AbwCtAmfz5nARdt4zH8DXgXah8e8BowM9x8Z/i+ahLfDAKsiVgfeD8/TPbzuxeG2E4DZwF7hda8HPq5w7DvhsS0qOffPw7haAo2AgUDbJP7HpwELgB8AFv5/d6vif9kLWB/+/5sAvwljbpqw/0SgW2Ux6qZbNt4iD0A33XSr/lYhMfkK+GHCtl3CRKUx3ydhXRK2rwCGJyy/AFwZ3r8AWJiYGIRfwucCnYGixC/MMGl5P+HYb6uJ+0Tgi8oeR7g8lOqTsDEJ27YZUyXXHwPcCHSosP53wEuV7N8I2Az0TVj3c+CDyh5zmJisB3okrDsI+Ca8fxNBQrdnEv9jB45OWP4l8F54/z+EiWC4nANsSEiIHDhyG+f+KfAxsG+F9dX9j98CrqjuNRku/wF4tkKMC4ChCfv/NOr3km66ZdJNxcEi9c9uwEtmVpawrpTgC7XckoT7GytZbp2wvMDdPWF5LrBreJ0mwCIzK9+WA8xL2DfxPmEV110EJT5twv1XJfWoqpZ4jWRiSnQRQSI03cy+AW5099cJSmPmVLJ/h/D8cxPWzSUoQawsno4EpUsTEuIxgmQO4C8EieTb4fYH3T2/ilgrnrv8/wDB477LzO5I2G5hXHMrObaiUQSP+emwevhJ4PdU/3xW9TxVZteEWHD3MjObR9XPnUjWU5swkfpnHnCMu++QcGvu7gtqeL4ulvANTFAVtjC8ThFBKVL5ddq6e7+EfROTN4Bbw3X7uHtb4ByCZKGq/dcTJDEAhG2ROlbYJ/GYZGL6/kD3We5+JkE125+B582sVXieHpUcspygVHG3hHXdCUp0KotnOUFS2y8hnnYedqpw97Xufo277wEcD1yd2OauEt0qXHdhwuP+eYX/eQt3/7iKuLbg7sXufqO79wUOBo4FzqP657Oq56my6y0k4XkLX1PdqPq5E8l6SsJE6p/7gT+VN8w2s45mdkItztcJuNzMmpjZaQTtjt5w90XA28AdZtbWgg4BPcxsyDbO1QZYBxSaWRfg1xW2LwH2SFieCTQ3s1wza0LQ1qlZVSff3pjM7Bwz6+juZcDqcHUZ8C9gmJmdbmaNzWwnM9vP3UuBZwme3zbhc3w1QclRZfGUAf8E/mZmncJrdjGzo8L7x5rZnmFCUkhQYllW2blCvzazHc2sG0Hbv2fC9fcDvzOzfuF524X/q6SY2RFmtk+Y5K4hSDTLkng+HwKuNbOBFtgzoUNAxf/ls0Cumf0w/F9eQ5DgJSaKIpJASZhI/XMXQUPwt81sLUEj/QNrcb5xQE+CUp0/Aae6+4pw23lAU2AaQbXi8wRt0KpyIzCAIOEoAF6ssH0kcH3Ye+5ady8kaPv0EEGJyXpgPtu2PTEdDUw1s3UEz9sZ7r7R3b8FfkKQKKwkaDDePzzmV2EcXwP/A54CHtlGPL8laIA+1oIenO8CvcNtPcPldQSdBO519/e3ca5XgAlhPAXAwwDu/hJBSd7T4TWmAMds4zwV7UzwPK0haFM4mqCKErbxfLr7cwSviacIOjK8TND4H7b+X84gKPn8O8Fr6TjgOHffvB1ximQV27IpiIhkEwuGZbjY3Q+NOpZsZ2YO9HT32VHHIiLpoZIwERERkQgoCRMRERGJgKojRURERCKgkjARERGRCNS7wVo7dOjgsVgs6jBEREREqjVhwoTl7l5x/EOgHiZhsViM8ePHRx2GiIiISLXMbG5V21QdKSIiIhIBJWEiIiIiEVASJiIiIhIBJWEiIiIiEVASJiIiIhIBJWEiIiIiEVASJiIiIhKBejdOWLrE8gqiDkGSEM/PjToEERGRGklZSZiZdTOz981smplNNbMrKtlnqJkVmtnE8PbHVMUjIiIikklSWRJWAlzj7p+bWRtggpm94+7TKuz3obsfm8I4RERERDJOykrC3H2Ru38e3l8LfAV0SdX1REREROqTtDTMN7MYsD8wrpLNB5nZJDP7j5n1q+L4S8xsvJmNX7ZsWSpDFREREUmLlCdhZtYaeAG40t3XVNj8ObCbu/cH/g68XNk53P1Bdx/k7oM6dqx0InIRERGReiWlSZiZNSFIwP7l7i9W3O7ua9x9XXj/DaCJmXVIZUwiIiIimSCVvSMNeBj4yt3/WsU+O4f7YWYHhPGsSFVMIiIiIpkilb0jDwHOBb40s4nhuuuA7gDufj9wKvALMysBNgJnuLunMCYRERGRjJCyJMzd/wdYNfvcA9yTqhhEREREMpWmLRIRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJgJIwERERkQgoCRMRERGJQMqSMDPrZmbvm9k0M5tqZldUso+Z2d1mNtvMJpvZgFTFIyIiIpJJGqfw3CXANe7+uZm1ASaY2TvuPi1hn2OAnuHtQOC+8K+IiIhIg5aykjB3X+Tun4f31wJfAV0q7HYC8IQHxgI7mNkuqYpJREREJFOkpU2YmcWA/YFxFTZ1AeYlLM9n60QNM7vEzMab2fhly5alLE4RERGRdEkqCTOzFmbWuyYXMLPWwAvAle6+pibncPcH3X2Quw/q2LFjTU4hIiIiklGqTcLM7DhgIvBmuLyfmb2azMnNrAlBAvYvd3+xkl0WAN0SlruG60REREQatGRKwkYABwCrAdx9IrB7dQeZmQEPA1+5+1+r2O1V4Lywl+RgoNDdFyURk4iIiEi9lkzvyGJ3Lwxyqu94EscdApwLfGlmE8N11wHdAdz9fuAN4CfAbGADcGFyYYuIiIjUb8kkYVPN7CygkZn1BC4HPq7uIHf/H2DV7OPAZckEKiIiItKQJFMd+SugH1AEPAUUAlemMCYRERGRBm+bJWFm1ggocPcjgN+nJyQRERGRhm+bJWHuXgqUmVm7NMUjIiIikhWSaRO2jqBx/TvA+vKV7n55yqISERERaeCSScJeDG8iIiIiUkeqTcLc/XEzawr0ClfNcPfi1IYlIiIi0rBVm4SZ2VDgcSBOMORENzM7393HpDQyERERkQYsmerIO4Afu/sMADPrBfwbGJjKwEREREQasmTGCWtSnoABuPtMoEnqQhIRERFp+JIpCRtvZg8BT4bLZwPjUxeSiIiISMOXTBL2C4KphcqHpPgQuDdlEYmIiIhkgWSSsMbAXe7+V/huFP1mKY1KREREpIFLpk3Ye0CLhOUWwLupCUdEREQkOyRTEtbc3deVL7j7OjNrmcKYRDJSLK8g6hAkSfH83KhDEBGpVjIlYevNbED5gpkNBDamLiQRERGRhi+ZkrArgefMbCHBYK07A8NTGZSISH2hEtL6QaWjkomSmbboMzPrA/QOV2naIhEREZFaqrY60sxOI2gXNgU4EXgmsXpSRERERLZfMm3C/uDua83sUOCHwMPAfakNS0RERKRhSyYJKw3/5gL/dPcCoGnqQhIRERFp+JJpmL/AzB4AfgT82cyakVzyJiIiknXUWaP+iLrDRjLJ1OnAW8BR7r4aaA/8OpVBiYiIiDR0yfSO3AC8mLC8CFiUyqBEREREGjpVK4qIiIhEQEmYiIiISASSSsLMbDczGxbeb2FmbVIbloiIiEjDlsxgrT8DngceCFd1BV5O4rhHzGypmU2pYvtQMys0s4nh7Y/bEbeIiIhIvZZMSdhlwCHAGgB3nwV0SuK4x4Cjq9nnQ3ffL7zdlMQ5RURERBqEZMYJK3L3zWYGgJk1Bry6g9x9jJnFahfe1mbMmMHQoUO3WHf66afzy1/+kg0bNvCTn/xkq2MuuOACLrjgApYvX86pp5661fZf/OIXDB8+nHnz5nHuuecCsPjrFd9tb3vASbTc80CKV8xnxVv3bHV8u4PPoEVsPzYv+ZqV7z241fYdDj+f5l33YtP8r1g95vGttrf/4SU07bwHG+MTKfz46a2273TU/9Fkp65smD2ONZ++tNX2DsdeQ+O2HVn/1RjWfvHGVts7nvg7GrVsx7ov32Xdl+9utb3TaSPIadKctZ8XsH76h1tt3/msfAAKx73IxjmfbrHNGjej8+k3ArD6o3+zae6kLbY3atGWjiddB8Cq0Y9RtGD6Ftsbt+lAh+OuBWDluw+yeenXW2xv0r4LOx39KwBWvPl3ilcu2GL7lZve4c477wTgnHPOYf78+VtsP+iggxg5ciQAp5xyCitWrNhi+w9/+EP+8Ic/AHDMMcewcePGLbYfe+yxXHttEN/ip/KoqFWfw2gzIJey4k0sfW7EVttb7zOM1vsMo3RDIcteHrnV9jb7/4RWex1OyZplLH/9jq2267VXs9fe0LF/YaedduKFF14A4He/+x2ffPLJFsd37dqVJ598EoArr7ySiRMnbrG9V69ePPhg8JxecsklzJw5c4vt++2333evveWv3U7J2uVbbG/WpQ87DrkAgGUv3UrpxjVbbG++W392OORMAJY8ewNeUrTF9hY9DqDdgScDeu3VxWtv6Ni/bLH9jTfeoGXLltx77708++yzWx3/wQcfAHD77bfz+uuvb7GtRYsW/Oc//wHg5ptv5r333tti+7JFxSn93GvaaQ/aD7sE0Guvtq+9oUP/stX2Bx54gN69e/Paa69xxx1bxzdq1Ci6devGM888w333bT2B0PPPP0+HDh147LHHeOyxx7baniiZkrDRZnYd0MLMfgQ8B7yWxHHJOMjMJpnZf8ysX1U7mdklZjbezMYXF2vucBEREan/zH3bhVoWFIFdDPwYMIKBWx/y6g4Mjo0Br7v73pVsawuUufs6M/sJcJe796zunIMGDfLx48dXt1utacTj+iGdox3rNVF/6HUhFek1IZVJx+vCzCa4+6DKtm2zOtLMGgFT3b0P8M+6DMrd1yTcf8PM7jWzDu6+fFvHiYiIiDQE26yOdPdSYIaZda/rC5vZzmEpG2Z2QBjLim0fJSIiItIwJNMwf0dgqpl9CqwvX+nux2/rIDP7NzAU6GBm84EbgCbhsfcDpwK/MLMSYCNwRjJVnCIiIiINQTJJ2B9qcmJ3P7Oa7fcAW3d7EBEREckCyUzgPTodgYiIiIhkk2qTMDNby/fjgjUlqFJc7+5tUxmYiIiISEOWTEnYd/NEhg3pTwAGpzIoERERkYYuqQm8y3ngZeCo1IQjIiIikh2SqY48OWExBxgEbEpZRCIiIiJZIJnekccl3C8B4gRVkiIiIiJSQ8kkYQ+5+0eJK8zsEGBpakISERERafiSaRP29yTXiYiIiEiSqiwJM7ODgIOBjmZ2dcKmtkCjVAcmIiIi0pBtqzqyKdA63KdNwvo1BFMOiYiIiEgNVZmEhSPljzazx9x9bhpjEhEREWnwkmmYv8HM/gL0A5qXr3T3I1MWlYiIiEgDl0zD/H8B04HdgRsJhqj4LIUxiYiIiDR4ySRhO7n7w0Cxu492958CKgUTERERqYVkqiOLw7+LzCwXWAi0T11IIiIiIg1fMknYLWbWDriGYHywtsBVKY1KREREpIHbZhJmZo2Anu7+OlAIHJGWqEREREQauG22CXP3UuDMNMUiIiIikjWSqY78yMzuAZ4B1pevdPfPUxaViIiISAOXTBK2X/j3poR1jnpIioiIiNRYtUmYu6sdmIiIiEgdq3acMDPrbGYPm9l/wuW+ZnZR6kMTERERabiSGaz1MeAtYNdweSZwZYriEREREckKySRhHdz9WaAMwN1LgNKURiUiIiLSwCWThK03s50IGuNjZoMJxgwTERERkRpKJgm7GngV6GFmHwFPAL+q7iAze8TMlprZlCq2m5ndbWazzWyymQ3YrshFRERE6rFkekd+bmZDgN6AATPcvbiawyBoS3YPQdJWmWOAnuHtQOC+8K+IiIhIg1dtEmZmzYFfAocSVEl+aGb3u/umbR3n7mPMLLaNXU4AnnB3B8aa2Q5mtou7L0o+fBEREZH6KZnqyCeAfgSTd98T3h9VB9fuAsxLWJ4frtuKmV1iZuPNbPyyZcvq4NIiIiIi0UpmxPy93b1vwvL7ZjYtVQFVxt0fBB4EGDRokKfz2iIiIiKpkExJ2Odhj0gAzOxAYHwdXHsB0C1huWu4TkRERKTBSyYJGwh8bGZxM4sDnwA/MLMvzWxyLa79KnBe2EtyMFCo9mAiIiKSLZKpjjy6Jic2s38DQ4EOZjYfuAFoAuDu9wNvAD8BZgMbgAtrch0RERGR+iiZISrmmtmOBFWHjRPWf17NcWdWs92By5KMU0RERKRBSWaIipuBC4A5hKPmh3+PTF1YIiIiIg1bMtWRpwM93H1zqoMRERERyRbJNMyfAuyQ4jhEREREskoyJWEjgS/COSCLyle6+/Epi0pERESkgUsmCXsc+DPwJVCW2nBEREREskMySdgGd7875ZGIiIiIZJFkkrAPzWwkweCqidWR2xyiQkRERESqlkwStn/4d3DCOg1RISIiIlILyQzWekQ6AhERERHJJtUOUWFmnc3sYTP7T7jc18wuSn1oIiIiIg1XMuOEPQa8BewaLs8ErkxRPCIiIiJZocokzMzKqyo7uPuzhMNTuHsJUJqG2EREREQarG2VhH0a/l1vZjsRzhtpZoOBwlQHJiIiItKQbathvoV/ryYYnqKHmX0EdAROTXVgIiIiIg3ZtpKwjmZ2dXj/JeANgsSsCBgGTE5xbCIiIiIN1raSsEZAa74vESvXMnXhiIiIiGSHbSVhi9z9prRFIiIiIpJFttUwv2IJmIiIiIjUkW0lYT9MWxQiIiIiWabKJMzdV6YzEBEREZFsksyI+SIiIiJSx5SEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiEQgpUmYmR1tZjPMbLaZ5VWy/QIzW2ZmE8PbxamMR0RERCRTbGvaoloxs0bAP4AfAfOBz8zsVXefVmHXZ9z9/1IVh4iIiEgmSmVJ2AHAbHf/2t03A08DJ6TweiIiIiL1RiqTsC7AvITl+eG6ik4xs8lm9ryZdavsRGZ2iZmNN7Pxy5YtS0WsIiIiImkVdcP814CYu+8LvAM8XtlO7v6guw9y90EdO3ZMa4AiIiIiqZDKJGwBkFiy1TVc9x13X+HuReHiQ8DAFMYjIiIikjFSmYR9BvQ0s93NrClwBvBq4g5mtkvC4vHAVymMR0RERCRjpKx3pLuXmNn/AW8BjYBH3H2qmd0EjHf3V4HLzex4oARYCVyQqnhEREREMknKkjAAd38DeKPCuj8m3P8d8LtUxiAiIiKSiaJumC8iIiKSlZSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBFKahJnZ0WY2w8xmm1leJdubmdkz4fZxZhZLZTwiIiIimSJlSZiZNQL+ARwD9AXONLO+FXa7CFjl7nsCfwP+nKp4RERERDJJKkvCDgBmu/vX7r4ZeBo4ocI+JwCPh/efB35oZpbCmEREREQyQuMUnrsLMC9heT5wYFX7uHuJmRUCOwHLE3cys0uAS8LFdWY2IyURN3wdqPDc1nemstPaanCvCdDrog40uNeFXhO11uBeE5C218VuVW1IZRJWZ9z9QeDBqOOo78xsvLsPijoOyRx6TUhl9LqQivSaSI1UVkcuALolLHcN11W6j5k1BtoBK1IYk4iIiEhGSGUS9hnQ08x2N7OmwBnAqxX2eRU4P7x/KvBfd/cUxiQiIiKSEVJWHRm28fo/4C2gEfCIu081s5uA8e7+KvAwMMrMZgMrCRI1SR1V6UpFek1IZfS6kIr0mkgBU8GTiIiISPppxHwRERGRCCgJExEREYmAkjARERGRCCgJExHJImFvdZHvVJypRjPXpI+SsAai/E1jZvqfij5EpVJmtg9wkZl1iToWyQxmZuVDQ5nZAAANFZU++sJuAMrfRGZ2PHCffulmtwofqsea2WFRxyQZY1dgGPATM9s16mAkegmfFZcBD+l1kV5KwhqAMAH7CXAj8Jy7b1ZJSPZK+FC9GvgDsDhxu0pLs0/554G7vwU8AAwBjtcXrgCY2YnAhUCuuy80s1i0EWUPfRg3AOEH7BHAdcCUsETsSTP7sZk1U0KWfcxsEMEsFAcBX5vZwWZ2LoC7l0UanKRVYskogLu/DdwNHI4SsayU0HzFwvvtgKeA/mb2R+C/ZvZvM2sbZZzZoF5M4C1bS/xgDUvCVgKXADsRzFKwnmAGgg9Uv9/wVfyiBRYCy4BHgDUEc7fubGYd3P1vUcQo0UgoGb0U6AtsAP4J3AX8H1BmZm+4+/zoopR0qfBZ0SSsOfmI4LNiMPAv4EDgIWA/YEwkgWYJJWH1UEIbsKMJPlQduA04FFjo7rPMrDfwGLALMDeyYCXlKrQB2x8oAlYBtwIXAI+6+xdmdjHQIrJAJTJhe5+TgN8BfwMaufuvzawVcCVQYmaPu3tphGFKGiR8VvwcOMzMvgBeA4aWl5KH3y3dgK8jCzRLKAmrh8IE7MfASODnwH+Andz9eoCwOnIk8Dt3VwLWwCV8qP4aOAEoBSYD77n7L8JtPwUuA86OKk6J1E7A8cDFwFrg92bWzN3/a2YbgblKwLKHmf2CoKbkOoIfa4cBjwMvhZ8V/wecr9LR1FMSVk+YWWeghbvHwzr8EwhKOXYGZhA0ti3XBbjC3d+tpJpKGogKJWC9CEo6Dgc6AgcDPzazpUAhQfuwc919WlTxSnpU8Z7fGRgPfOXux4T7XWpmG9z9ibQHKWllZt0Iku91QFugM3AccD7Bj7b3gPPMrBB4geAHnH7Ap4Ea5tcDZtaM4FdsUzNrHn7AriAoBfsNcIG7zzOzc8zsVHe/z93fBY330lCZWeuEBGwHgg/YVkBTd18EfETQ2Labu08FTnf3KVHFK+lRITE/ycx+YmY/APIJPjPGh9suBK4AxkYWrKSFmR1FUMo1nODzYCXwd4LhSo5z9yOBVwnajZ4LbFYClj5KwuoBdy8i6LmyErjDzLoDHwI/BfLdfWbYG+53BB+00oCZWRPgYjM7MWzn9XCYeH0C5JlZO3dfDMwBegC4+7roIpZ0qTA8yeVAH4Iv3H2Ba4CTzexZgk48p7j7zKhildQzs1zgdmAE8IK7fxNuKiRoS9whXB5IUKPyG3ffmO44s5mqIzOYmbUg+OUyk+DN0pegp9vVwA3AzwiSss+BfgRtwN6PKl5JD3cvNrMCglKN1cCgcNO/CKqp3zKzl4FzgKOiiFHSK6GzjhGUcBzi7keY2U3AUqAg3D6YoHNGY3dfHWHIkmJm1p6gpuRX7j4mYf1lQIm7P2Bmk8Oeke2B4e6+LKJws5aptipzWTDFyLHAjsAA4EyC3o6nELxprgdaE3yoNnH3r9QGLDuYWSfgKoIqhhHu/kQ4CGtT4DSC18Rod58RYZiSBmbWxt3Xhvd3AZYDTxMMU7IbQVX0JjM7Exjn7urxlgXMbGfgeeDY8oTbzG4HTibozDXd3f9uZj2BVe6+PLJgs5hKwjKQme1B8OH5EfALgsaTfwl/pSwzs8YEjSpvB+4M2/wAagOWDcxsCHAA8FeC8Z7eCqsg/25mPwLeV6+m7GBm7YDzzWwt0AQ4yd2PMbOvgROBYWEC9lOC6smjo4tW0sndF5vZXKA3MC5c/Qbwe4JBnE8PPzdmRRWjKAnLVLsBG4ES4H6CgVfbm9kZ7v60u38eVlUOJajXlwasktLNJsBeBNOM/IOgV+SLZrYvwZfskemPUtItbO8zGHgReBfYRFBiDkHV9GbgFTN7GzgGOCNsKyhZICwZXw1cYGYz3H21u/833NaVoFZFs6lETNWRGcTM9iQYhuLLsD7/I4J2Xi+b2SUEoxg/B8QJPnzfcPelkQUsaWVmh7n7h+X3gbMIBuL9M0HPpoOA8apuavjM7FjgT8AtwEsETROGAw+4+50J+/2Y4IfaHL0uskdCG8E2BFWSX4d/vyRo4nIZcLa7T48wTEFJWEYJE637gQHuPtHMTifo8fhHd38t7An3E4KB9c5y93ciDFdSzMw6u/uS8H4bgmlEViYMwHoEcCfwJnC3uy+IKlZJn7Ctz78JerJ9lrB+EPAs8LewavpUgnY/GpokC5lZI3cvDT87biAo+epMkJRf7e5fRhqgAKqOzAgWzFi/1t0fDNt7/dfMfujuz5rZZuBWMytz94fCXnGd3H1SpEFLSplZH2Camd0FTA3/938CLjKzvwOXu/v7ZjaOoOPGhijjlbQqAoqBTWGzhN8CRwBLgPkEo+HvQ1A1/aPIopS0MLMDgHbu/k5i04UwAWvi7mvN7NdhydgOBOOA6fMiQygJywynAx+YWaG73xuOA/VemIi9bGYO3BM2onwKWBRtuJIG64CPgcXAcDM7mGB+t5cIhp141cxeIxi25Bx3XxVZpJJuq4G3CDrm9CNoDzYK+IqgqulfwALgVnePRxOipIOZnQDcDPzGzJq6++Zw/SB3H+/uxfB9hy0NS5J5lIRlAHe/zcw6AJ+ZWa673xUM98N7Znaku78SNrJUF+Is4e7zzexTgobWxxAk6mcTVClcDexOkIBdqi/a7BKWaDxAkKR3A14JB3TGzH4GfO7ur0cZo6SemTUlaAd4Rfn4kOH3xB7AdWZ2LRB39zINXZS5NGJ+RMysdTg+C2Z2EMFo+OOAZ81sZ3e/C/gjQWI2wN1fcvcPw8EYpQFL+B/n8f2o1gsJRrWeSjA+2GLgFrX3yU7uvs7dP3H3ZxMSsNOAfYDPo41O0sQJxokcZGb7mFlrgnmDcwhGvy8haKqgoYsymBrmRyBhVOvHgAkEo5yf4u7TwvY+BwAnhOO8XAVMUSP87BK+RpoAfyD4ZTsQyAurp3sDS1UFKfDdAK3DCWbQGK7EPHuYWT/gAaAXwRhg+xD8QDsU+Iag9/QF+qzIXErC0izs2XSEu//bzH4O3A3c7O63JOxzN/BDgoEWF4XrVJychcKEazTwD3e/Oep4JPOEjfOPBGa4++yo45HUMrOcsIqxvPfjjgQ/1v5B8ONsrZndTNB85Ul313zCGUzVkek3CDjLzM4F5hFMpHt+WJUAgLtfDrxMOPlyuE4JWBYKpx3KAxqZWcuo45HM4+4b3b1ACVjDZma7h70dy8JErDRsA1ZGUGq+L9DazI4n6BX7ghKwzKeG+Wnm7q+HvR9PIJhe5nEzWwzcZ2ZrCOrxzwIuVuIlobEE872JSBay7yfjXmJmf3L34vISMaAw7MRzHnABwbzCl2jqsvpB1ZFpYGZdgN3c/eOEdacQfLG+HSZixxP0emsM3OXuz0UTrWQiM2upsX1Eso+Z7e7u35jZcQTNVJYAt4eJWGN3Lwn325Vg/Dg8mGdY6gElYSkWNrA+l6DR7O/dfUzCtpMISr3+6u6fhA1scfdFagMmIpLdwvZevyPoKV9EMF/waQRNWbZIxPSdUT8pCUsDM9uJYJLlE4G/uPvohG3XEcwJebK7l0YToYiIZJpwLDAj6B19hLv/ycyOBE5ly0RMCVg9pYb5aRA2jnwReBW41syGJGz+mKAbcVkUsYmISGYxs67hj/fO4ThwzYADzOxKd/8vwWTcuwB/CBvrKwGrp9QwP03cfaWZPU+QbN1gZg8TDMB5B8EE3XoTiYhkuXAqojyCtl+7mNmrwD3AX4ArwlKvv4UdvH4EtAXUC7KeUnVkCoUNJdcA68uTrLB4+SjgVwTzu70Q9phUcbKISBYzsyMIBl89E5gDdAaeAN4EbgP2By4HJrr7reqwU/+pJCxFwkb2fwF+7e7ryrsThxOsvmZmbwKlmtdLRERCBwN3u/sEM2vu7jPM7HTgJWCju+eHP+TPM7P27r4y2nClttQmLEXCke43E8xwTzieS+L24vJ1SsBERLJXwnyxXQnmigUoCkfFnwtcCBwTjhf2MfALJWANg5KwOhKOXIyZ7Vw+MTdBvf46M+scbtPk2yIisoWEH+LPA4eY2cBwnYdtv5YRtPva7O6b3H1jVLFK3VJ1ZC2FU8mUuPtmMxtI0NarzMy+Be4F9gJ+DIxSiZeIiGzDWOAjYHjYTGU8wffJocCOBNMTSQOihvm1FI7ZchrwDkGy9SjBLPb/AD4kaGC5CRgeFiuLiIhUKpxh5WKCSdk/IWjWcipwprtPijI2qXtKwmoofKMsChvWv0EwkvHJ7v5muD0HiAG5BAO1/sHdP4ooXBERqSfMrAUwiKAn/XLgP+4+I9qoJBWUhNWQmd0FPAxMAa4H+hMMqHe2uxdW2PcSgjfT8PJ5vkRERCS7qWF+Dbn7FQRjgD0O5Lv7KQTTSDwHYGZ7mNnwcPdlBAPqNYoiVhEREck8SsK2U3kPRzNr7e5xgi7FT4bVj5cB35rZZIIpispnst8EXBFOPyEiIiKi6sjtUT6oqpnlAscAv3H3DWb2OrAROD3cfgowz90/TTwuwtBFREQkwygJ205hV+EHgZ8lNrQ3s5eB5sAxCVMUKfkSERGRSqk6shpm1s3MDk5YNRT4t7t/ZGaNwoH0cPcTgWJgQPmOSsBERESkKhqsdRvCdl79gXlm1tbd1xB0F969fBd3LzazwcASdz8uqlhFRESkflFJ2DaEE26/DswGnjKzHwFvA0eZ2cnAzmY2gGCA1vYRhioiIiL1jNqEVSGhEf4PgW4ECetJwO+BpsANwAagC3Cbu78aWbAiIiJS76g6sgphAjYAuAm4FJgFOPBn4PfufpyZ7Qi0c/e4GuGLiIjI9lASliAxkTKzPQiSr7nu/mW47hWgDPirmf3F3QuAVaBG+CIiIrJ91CYsZGbNgYPC+3sC+wGLgI5m9hMAd18JvE4wSv6SaCIVERGRhkBtwkLhhNzHAT8C9gEOBkqBXwLtgHfc/Z1w38aaA1JERERqQyVhIXdfQDDO10nAOHdf7u6rgFHASuC4hBIxJWAiIiJSK1mfhCXMBbkXweTb5wIzzCzfzHZ292+BN4AVwJzoIhUREZGGRNWRgJkdTTAV0fHuPtHMhgDHEky8/TnBKPj3h6VlIiIiIrWmkjCz7kA+cLa7TwRw99HAa+EufwE+UwImIiIidSlrS8ISBmPdDbjD3U8N1zd3901m1iSckmhnd1+sccBERESkLmVdSVh5GzCgVfh3IbCrmV0DECZgPwL+Fs4duSRcrwRMRERE6kxWDdaaUPp1FPBLM/sMmA9cDtwYDtD6PnA9cIO7l0UYroiIiDRgWVcdaWaHAfcCFwP/BzQDLgQ6AtcBi4FP3P0/qoIUERGRVGnwSVg4CGtHYLK7l5nZaQRTDa0H/g6c4u5zzayjuy9LOE4JmIiIiKRMNrQJOxG4G9g/XN4APAbcB/w4TMCOAn5lZuXtxNQGTERERFKqwSZhZraHmZ3h7v8A3gZGmNkgYDTwPDAp3O8w4A7gU3dfH1nAIiIiklUaZBJmZr2BF8uX3f0W4CPgBqAPwQTcceBNgkb417n76wk9J0VERERSqsG1CTOzvgQN70e5+8Nm1gTYx90/N7MbgP7An9x9gpm1BnD3dWoDJiIiIunUoErCwoTrVWBtmIA1IijtGgLg7jcSTEP0FzP7gbuvc/d14TYlYCIiIpI2DWqcsHCE+zOBAjO7DDgYmOjuf0vY5xYz2xRZkCIiIiI0wOpIgLAB/jvAdHc/KGH9YGA/d78/suBEREREaGDVkeXcfTwwFOhjZj8DMLODgX8CsyMMTURERARooCVh5cISsTeA54B9gD+7e0G0UYmIiIg08CQMwMx+APwXONfdX444HBEREREgC5IwADNrrWEoREREJJM0yDZhldBI+CIiIpJRsqIkTERERCTTZEtJmIiIiEhGURImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIR+H+8+GtGLUlkwAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAICCAYAAACHlRq/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB610lEQVR4nO3dd3xV9f3H8dcng70hbPAqskEUENGqoGIdce89Wuv8ua3GUcVJWmu1alu17lVn64q1aqvgVlRkyVKD7CEQEiCQ8fn9cU70GgK5QG5Okvt+Ph73kXvPOfecz81dn/v9fs/na+6OiIiIiNSutKgDEBEREUlFSsJEREREIqAkTERERCQCSsJEREREIqAkTERERCQCSsJEREREIqAkTERShplNM7PR4fWxZvZkDe77GjN7sKb2JyINn5KwWmJm+WY2JgWPfYaZvR/FsaVuMrOTzGyimRWZ2SIz+7eZ7bmN+3zUzG6pbjt3H+ju727LscLjjTaz+ZX2fZu7n7Wt+xaR1KEkTERqjZldBtwF3AZ0AnoCfwUOT/JxM5K5fxGRraEkrJZVtAyZ2R/NbKWZfWdmB4XrjjeziZW2v9TMXgmvNw7v972ZLTGz+8ysabiug5m9ZmarzGyFmb1nZmlm9gTBF92rYcvDlWYWMzM3szPNbF4Yx7lmtquZTQ73cW+lOH5lZl+H2/7HzLaLW+fh/WeH9/2LBfoD9wG7h8deFW5/sJlNN7NCM1tgZlck8V8udYSZtQZuAi5w93+6+xp3L3H3V939t+Hr+y4zWxhe7jKzxuF9R5vZfDO73MyWhi1oZ4brzgZOBq4MX2evhsvzzewqM5sMrDGzjCpahZuY2bPha/ELMxsSF6+b2Y5xtx81s1vMrDnwb6BreLwiM+tauXvTzA4Luz9Xmdm74fuhYl2+mV0Rvt8KwhiahOuqfC/X/DMiIlHTGzsauwEzgQ7AH4CHzMyAV4G+ZtY7btuTgKfD67lAH2BnYEegG3B9uO5yYD6QRdDCcA3g7n4q8D1wqLu3cPc/VIqjN3A8QevEtcAYYCBwnJmNAjCzw8P9HRXu/z3gH5Ue0yHArsBOwHHAAe7+NXAu8FF47Dbhtg8B57h7S2AQ8L8E/29Sv+0ONAH+tYn11wIjCV7fQ4ARwHVx6zsDrQle978G/mJmbd39AeAp4A/h6+zQuPucCGQDbdy9tIpjHg48D7QjeJ+9ZGaZm3sQ7r4GOAhYGB6vhbsvjN/GzPoQvEcuIXjPvE7wQ6hR3GbHAQcC2xO8b84Il1f5Xt5cTCJSPykJi8Zcd/+7u5cBjwFdgE7uvhZ4meCLgzAZ6we8EiZpZwOXuvsKdy8k6NI5IdxnSbif7cLWhfe8+olBb3b3Ynd/E1gD/MPdl7r7AoJEa5dwu3OBce7+dfhFdhuwc3xrGJDr7qvc/XvgHYIv0k0pAQaYWSt3X+nuX1QTpzQM7YHlm0iGIGjNuil8DS4DbgROjVtfEq4vcffXgSKgbzXHvNvd57n7uk2s/9zdX3D3EuBPBEniyEQf0GYcD+S5+1vhvv8INAX2qBTbQndfQfADbOdw+da8l0WkHlISFo3FFVfCxAugRfj3acIkjKAV7KVwmyygGfB52E2xCngjXA5wOzAHeNPMvjWznATiWBJ3fV0Vtyti2g74c9xxVwBG0CKx0WMC1sbdtypHAwcDc81svJntnkCsUv/9AHSwTY/P6grMjbs9N1z24/0rJXDVvc4A5iW63t3LCVqgum5684T97LGE+55HYu+ZrXkvi0g9pCSs7nkLyDKznQmSsYquyOUEidFAd28TXlq7ewsAdy9098vdfQfgMOAyM9svvO+2/oqeR9B92Cbu0tTdP0zgvhsd290/c/fDgY7AS8Bz2xif1A8fAeuBIzaxfiFBwl+hZ7gsEZt6jVf32u9RcSUcd9U97phrCX74VOi8Bfv92WMJW7J7AAuquV9172URaUCUhNUxYdfF8wS/htsRJGUVv6T/DtxpZh0BzKybmR0QXj/EzHYMP+wLgDKgPNztEmCHbQjrPuBqMxsYHqu1mR2b4H2XAN0rxsKYWSMzO9nMWoePdXVcnNKAuXsBwRjGv5jZEWbWzMwyzewgM/sDwRiq68wsy8w6hNsmWsdra1/jw8zsqLB17hKCJPHjcN0k4CQzSzezA4FRlY7XPjzZoCrPAdlmtl84xuzycN/V/nCp5r0sIg2IkrC66WmCAfLPV+p+uYqgm+JjM1sNvM1PY2J6h7eLCFoc/uru74TrxhF8ua3amjMR3f1fwO+BZ8LjTiUYmJyI/wHTgMVmtjxcdiqQH+7rXIKxQJIC3P0O4DKCAffLCFpZ/4+gRfQWYCIwGZgCfBEuS8RDBOMMV5nZS1sQ0ssE47dWErwujwp/HABcDBwKrCJ4jf64X3efQZA0fhse82ddmO4+EzgFuIegFftQgpNjNiQQ0+beyyLSgJjGe4qIiIjUPrWEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEJYGZtTGzF8xshpl9bWa7m9nNZjbZzCaZ2Ztm1jXc9mgzm2Zm75lZ+3BZLzN7NtpHISIiIslk7h51DA2OmT0GvOfuD5pZI6AZUO7uq8P1FwED3P1cM3sXOBg4Cmjr7veY2T+A6919dkQPQURERJIsI+oAGhozaw3sDZwB4O4bgA2VNmsOVGS/5UBjgkStxMz2AhYrARMRqTmff/55x4yMjAeBQagXKFWUA1NLS0vPGjZs2NKog6mKkrCatz2wDHjEzIYAnwMXu/saM7sVOA0oAPYJtx8HvA0sBE4BngdOqPWoRUQasIyMjAc7d+7cPysra2VaWpq6gFJAeXm5LVu2bMDixYsfBA6LOp6q6NdAzcsAhgJ/c/ddgDVADoC7X+vuPYCngP8Ll73l7sPc/VDgcOB1oE84puzvZtYskkchItKwDMrKylqtBCx1pKWleVZWVgFB62edpCSs5s0H5rv7J+HtFwiSsnhPAUfHLwiTrTOAvwA3AqcD7wMnJzNYEZEUkaYELPWEz3mdzXXqbGD1lbsvBuaZWd9w0X7AdDPrHbfZ4cCMSnf9LXC3u5cATQnGjJUTjBUTERGRBkZjwpLjQuCp8MzIb4EzgQfDxKwcmAucW7FxWK5ihLvfGC66B/gMWAUcUXthi4ikhlhO3rCa3F9+bvbn1W2Tnp4+rHfv3usqbh911FErbrvttsUjRozo+8c//nHe3nvvvXZLjvnhhx82nTdvXqPjjz++oKr1EyZMaPbwww+3f/TRR+dtah+jRo3a8cUXX/wO4MEHH2yXk5OzLNHjv/baay3vuOOOTu+8886cimVHH3107JBDDik488wzV950000dL7300uUtW7Ysjz9Whw4dypo1a7bL2rVrv8zPz88899xze7zxxhvfVn48Tz31VOtp06Y1ve222xYnGlN9oyQsCdx9EjC80uKjq9i0YvuFQHbc7ecJBuiLiEgD0bhx4/IZM2ZMr6n9TZw4sdnEiRObV5WElZSUsPfee6+tLrEbP378HICZM2c2euihhzpuSRJWnfvvv7/Tb37zmxUVSVjFseLFYrGSN95441vY+PGcfPLJBQQnsjVY6o4UERGpI/75z3+22nnnnfsNGDCg/0EHHbRDQUFBGsD48eOb7bLLLv369u07YPDgwf1/+OGH9HHjxnV99dVX2/br12/A3//+97aXXXZZ1yOOOGL7oUOH9jvqqKO2f+2111rus88+OwIUFBSkHXPMMbE+ffoM6NOnz4BHH320DUC3bt0GL1q0KOPyyy/vPm/evMb9+vUbcM4553Q/8sgjY0888USbirgOO+yw7Z988sk2VYRcpVtuuaXj0qVLM0eNGtVnt9126xN/rPjtZs6c2ah3794Di4uLrfLjufvuu9ufdtppPQEWLlyYccABB/QaNGhQ/0GDBvV/8803mwPk5eW16Nev34B+/foN6N+//4CVK1fWq7ymXgUrIiJSX61fvz6tImGoSDTi1y9atCjjtttu6zJhwoRZ06dP/3ro0KFrb7755k7FxcV28skn97rrrru+nzlz5vTx48fPbNWqVdnVV1+98NBDD105Y8aM6b/5zW9WAsyePbvJhAkTZr766qvfxe87JyenS6tWrcpmzZo1fdasWdOzs7ML49ffcccd83v06LF+xowZ0++///75Z5111vLHHnusPcAPP/yQ/vnnn7c4/vjjVyX6WK+77rqlHTt2LBk/fvysTz75ZFZ12zdp0sSrejwVzjnnnB6XXXbZkqlTp379r3/965tzzz03Fsbd+e677547Y8aM6R9//PGMFi1alCcaY12g7kgREZFaUF135Lvvvtv8m2++aTJixIh+ACUlJTZs2LCiyZMnN+nYsWPJqFGj1gK0a9duk4nGgQceuKpFixYbnQU6YcKEVs8888y3FbezsrLKNhdrdnZ20cUXX7zdwoULM5588sm22dnZKzMzM3+2jZlVebbpppZviw8++KDV7Nmzm1bcLioqSi8oKEgbOXJk0RVXXNHjuOOOW3HiiSeu7NWrl5IwERER2TLuzp577rm6civWp59+2nRT96msefPmNZaEHH/88T/8/e9/b/fiiy+2e+SRR/Irr+/YsWNpQUHBz/KIlStXZmRlZZXWVAwV3J0vvvji62bNmv0swbvtttsWH3HEEQUvv/xy67322qtfXl7e7F122aW4po+fLErCUkAsJy+NoOxFVZcSYGV4KcjPza5XvyJEtlQsJy8daE8wHMMqXYi7Xg4szs/NrvEvFJGqjB49es3ll1/ec+rUqY0HDRq0fvXq1Wn5+fmZO+20U/HSpUszx48f32zUqFFrV65cmdaiRYvyVq1alRUVFSU0rGjUqFGr77zzzo4PP/zwPIBly5alx7eGtW7dumzNmjU/29e55567fLfdduvfoUOHkmHDhm2U2AwaNGj9kiVLMr/44osmQ4cOLZ41a1ajGTNmNB05cuQ6gObNm5cVFBSkdenSJaHHv7nHs+eee64eN25cx5tvvnkJBGeG7rHHHuumTZvWeMSIEetGjBix7vPPP282derUJkrCpNbFcvI6Av2ruHQEGiW4m/JYTt5yYAFh0VlgJvAJ8GV+bvb6mo5b6o6whMqzcYt2AK4nSFgOJ0hKlgJnuPtCMzsauAlYARzh7j+YWS/gNnc/vnaj/7nwh8eOBJWyBwK9gO2AGNCdxD/7SmM5ed8Dc4Bvwr8Vl2/0nqi/EikpUdMqxoRV3N53330L/vrXvy6ouN21a9fS+++/P/+EE07YYcOGDQZwww03LNhpp53WP/XUU99cdNFFPYuLi9OaNGlSPmHChFkHHXRQ4R//+Mcu/fr1G3D55Zcv2tyxx40bt+jMM8/s2bt374FpaWl+zTXXLDz99NNXVazv3Llz2bBhw4p69+49cN999y24//775/fo0aO0V69exYceeuiqqvbZtGlTf+SRR74988wzY+vXr0/LyMjwv/zlL3Pbt29fBnD66acvP/DAA/t06tRpQyLjwjb3eB544IF5Z511Vs8+ffoMKCsrs912261wjz32+P4Pf/hDxw8//LCVmXnfvn3XHXPMMfXqbEpzVwHh+iaWk9eIYJLwg4CRQD+gXZIPuwGYRJCQfQJ8kp+bvdHpxtIwmFk6QTK+G7DS3VeHyy8CBrj7uWb2LnAwcBTQ1t3vMbN/ANfX9gT0sZy8xsBo4BDgFwTviYS7cLZSOcEPlY+BPODf+bnZNXZ6v9Ssr776Kn/IkCHLo46jPiksLEwbMGDAgEmTJn1dkVjVR1999VWHIUOGxKKOoypqCasnYjl53Qm+8A4mqMLfopZDaASMCC8XhjH9ALwJ/AN4Iz83u6SWY5Lk2Q/4xt3nVlrenGA2BwiSkMYEszqUmNlewOLaSsBiOXmdCOrrHQLsT+2/J9KAnuHlOMBjOXkTCeZ/zQMm5udm61eu1EsvvfRSy/PPPz927rnnLqnPCVhdp5awOiyWkzcQOIXgi2ZwxOFUZwXwIkFCNl5jy+o3M3sY+MLd7w1v3wqcRlA4cR93X2Zm+wO5wEKC1+nzwAnuviJZccVy8nYmSLoOBXblp3FcddFS4A2ChOy1/NzsLaqGLjVLLWGpqy63hCkJq2PCbpVjCaY1+kXE4WythQRji57Mz83+IupgZMuE020tBAa6+5JK664Gmrj7DZWWn0bQJf4xcAXBiR4Xu/s2Jx6xnLwM4HiC+VWHbOv+IrIKeBj4S35u9rfVbCtJoCQsdSkJk2rFcvKygP8Dzgc6RBxOTfofcGN+bvaEqAORxJjZ4cAF7v7LKtb1BF5390Fxy5oBrwEHhH+PAo4BGrn737c2jlhOXjPgLOBSggH1DUE5QevYnfm52W9HHUwqURKWuupyEqYxYRGL5eT1Aq4k6OppEnE4ybAvsG8sJ+9d4Kb83Ox3Io5HqnciQbcyAGbWO26c1+HAjErb/xa4291LzKwpwZixcoKxYlsslpPXgWDc4QUEZ2Y2JGmEYztjOXmfArcCr2rsmEhqUktYRGI5eS2B3wEXk3gJiYbgPYJkTK0AdZCZNQe+B3Zw94Jw2YtAX4LEai5wrrsvCNd1Bf7u7tnh7WOBsQTdb0e4e8JnC8Zy8mIEXZlnspUJXD31FcF74p9RB9KQqSUsddXlljAlYbUslpNnwKkEA5oTq2DXMH0IXJKfm/1Z1IFItMIxX1cS1CRrHHE4UcoDzsvPzZ4XdSANUeUk7F8fLxlWk/s/cmSnauuOzZw5s9EhhxzSe/bs2dMqll122WVdW7RoUdahQ4fSww47bHUsFisBOP7447e78sorlwwbNqy4W7dugydOnPh1ly5dSnfZZZd+X3755YyZM2c2euedd1qce+65KwAmTJjQ7OGHH27/6KOP6vVTSV1OwjSBdy2K5eQNJ0g+HiO1EzCAPYCPYzl5d4etgpKCYjl5uwCfEXTLpXICBsFZ0NNjOXkXhsVmJYU8+eSTHb7//vsfJ2d89tln51ZVpf7LL7+cATB79uzGzz777I/1Iffee++1SsDqH73Ra0EsJy8rlpP3EPApQXFVCaQRjP2ZHsvJOyTqYKT2xHLymsRy8nIJ3hM7RxxOXdICuBv4ICxRIyli6tSpzU477bQd+vXrN6CoqMhGjBjRd8KECRt1yzdr1mwXgGuvvbbbxIkTW/Tr12/AjTfe2PG1115ruc8+++wIsHr16rRjjz02Nnjw4P79+/cf8OSTT7YBmDhxYpPBgwf379ev34A+ffoMmDJlSqr/8ImckrAki+XkjQImA7+ibtc0ilJ34NVYTt5DahVr+GI5eXsRjIO6Cp0ctCkjgS9iOXk3hTNkSAM3aNCgtY8//vi3M2bMmN6iRYtqxwndeuutC4YPH140Y8aM6TfccMPS+HXXXHNNl3322Wf1lClTvn7vvfdmXnfddd1Xr16dds8992Sdf/75S2bMmDF98uTJX2+//fYbkveIJBFKwpIklpNnsZy8HOC/QOeo46knfgVMjuXk7R11IFLzYjl5LWM5eX8BxgN9oo6nHmhEcPLOpFhOnlrQGwCzqn+Hb2r51nr33Xdb3XnnnV369es3YM899+y7fv16mzNnTqPdd999zR133NHl2muv7Tx79uxGiSR7klxKwpIglpPXFngFGAekRxxOfRMD/hfLybsg6kCk5sRy8voAnxPUwVOL8JbpD4yP5eSdHHUgsm06depUWlBQ8LPvhBUrVqR36NChtCaP4+688MILc2bMmDF9xowZ0xctWjRl6NChxeeee+6Kl19+eU7Tpk3LDznkkN6vvPKKeh4ipiSshoWD778gmFpFtk46cG8sJ+/PGqBc/8Vy8sYQTPreO+pY6rFGwJOxnLzrow5Etl7r1q3LO3bsWFKR/CxZsiT93Xffbb3vvvsWtWjRoqxyglbNvsqKioqq3H6fffZZfccdd3QqLw9mj/vggw+aAkyfPr1R//7911933XVLDzjggFWTJk1K9iT3Ug2Nx6hBsZy8c4G70FleNeUiYIdYTt6J+bnZRVEHI1subNG8C33W1JQbYzl5OwC/yc/NLok6mPoskZISyfDYY499d/755/e88sorewBcddVVCwcOHLj+tNNOW37hhRdu99vf/rZ84sSJX1e3nxEjRqxLT0/3vn37DjjppJOWDxs2bF3Futzc3IVnn312z379+g0oLy+3Hj16rH/nnXfmPPnkk+2ee+659hkZGZ6VlVVy8803L0rmY5XqqU5YDYnl5P0OuCnqOBqoScCh+bnZ86MORBIXy8m7naD4qtS8d4Cj8nOzV0UdSH2hYq2pS3XCGrhYTt5NKAFLpp2BT2I5eUOjDkSqF8vJS4/l5D2CErBk2gf4MJaTt33UgYjI1lMSto1iOXm3EZzBJMnVFZgQy8nbI+pAZNNiOXlNgBeBMyIOJRX0Jyh4PCLqQERk6ygJ2wZhd8vVUceRQpoDr6mIZd0UTj/0MsEk31I7OgL/ieXkDYg6EBHZckrCtlIsJ+9O1N0ShbYEXzrbRR2IbORvwC+jDiIFtQFej+XkqR6hSD2jJGwrxHLy/gRcEnUcKawb8GYsJy8r6kAkEMvJuxI4K+o4Uth2BK3EzaMOREQSpyRsC4VlKC6NOg6hD8Gv/xZRB5LqYjl5xwC5UcchDAOeieXkqUC0SD2h2j1bIJaTtw9wT9RxyI+GAy/FcvIOzs/N1hxoEYjl5O0GPI6q4NcVhxBMAK4ZJ6oztvWwmt1fQbV1x7755pvMs88+u+ecOXOalpeXM2bMmIK//e1v85s0aeITJkxo9vDDD7d/9NFH5919993tJ06c2Pzxxx//vvI+nn766da/+93vuqelpXHggQeuuueeexZs6ngvvPBCqxtvvLFbUVFRWuPGjb1Xr17Fd9111/zevXvr87KOUEtYgsJTwV9AiWtdsx9wb9RBpKJwXN7LgKpu1y3nx3LyNF61jikvL+eII47Y8bDDDls1d+7cqd99993UNWvWpF188cXdAPbee++1jz766Lzq9nPVVVf1yMvLmz179uxpF1xwwbJNbffZZ581ufzyy3s+9thj33333XfTZsyYMf2kk076Yc6cOZoQvg5REpaAWE5eY4IErF3UsUiVfhPLyTsi6iBSSSwnrzWQB3SKOhap0h9iOXnHRh2E/OTVV19t2bhx4/KLL774B4CMjAzuu+++ec8++2yHwsLCtNdee63lPvvss2N1+8nMzPT8/PxGAP369dtki9att97a5bLLLls0dOjQ4oplJ598csFBBx1UBHDHHXd0GDRoUP++ffsOOOCAA3oVFhamATz88MNte/fuPbBv374Dhg8f3ndbH7dsnpKwxPwZUKHQuu3BWE5el6iDSCFPAioVUncZ8EgsJ69X1IFIYMqUKU2HDBmyNn5Zu3btyrt06bJh+vTpCU11V1ZWRu/evYvPOeec2MyZMzfbojVr1qwmI0aMWLup9SeffPLKqVOnfj1z5szpffv2XXf33Xd3AMjNze3y5ptvzpo5c+b0N954Y04iccnWUxJWjVhO3knAOVHHIdVqDzwWy8nT2KQkC98TmqC+7mtOkIjpc76BuO222zoOHjx47Z///Oe5hx566I4LFy7MGD9+fLMDDzxwh83db/Hixen9+vUbEIvFBl1//fWdAD7//POmw4YN69unT58BL774Yvtp06Y1ARg+fHjRySefHLvjjjs6lJaW1sbDSml6c25GWAJB443qj/3RmatJFcvJawfcGXUckrC90HuiThg0aNC6r776qln8shUrVqQtWrSo0YABA9Ynso+333671ejRo4uOOOKIwiuvvHLRAQcc0Puhhx7qcPzxx6+svG2fPn2KP/3002YAnTt3LpsxY8b00047bVlRUVE6wNlnn739vffe+/2sWbOmX3XVVQvXr1+fBvD0009/f8sttyycN29eo2HDhg1YvHixzrZNIiVhm3c7QXFQqT9ui+XkDYk6iAbsDoIq7VJ/3BLLyesfdRCp7rDDDissLi5Ou/fee9sDlJaWcv755/c49thjl7ds2bI8kX3stNNO65544ol2ZWVlnHXWWSu333774pdffrndscceu6ryttdcc83iO+64o8sXX3zRpGLZ2rVr0+Kv9+zZs2T9+vX2zDPP/Djeedq0aY333XffNXfdddfCtm3bln777bcayJ9EOtNvE2I5eXsBp0Udh2yxxsDTsZy8ofm52Qn9upTEhCVazog6DtliTYAHYjl5e+fnZnvUwdQZCZSUqElpaWm89NJLc84+++ztbr/99i7l5eXsu+++BXffffcmS0xUdtttty369a9/3aNPnz4DmzRpUr777rsXnnLKKcuOPPLIHd54441v0tN/arQaMWLEuj/84Q/zTjvttO2LiorS27VrV9qtW7f1t95660KAnJychSNGjOjfrl270qFDhxZVtJBdeuml3fPz8xu7u+25556rR44cua7G/xnyI3PXe7KycA68L4FBUcciW+3q/NxsFRCtIeHE3JOB3lHHIlvtzPzc7EejDiIqX331Vf6QIUOWRx2H1L6vvvqqw5AhQ2JRx1EVdUdW7RKUgNV318Ry8tRtVnN+hxKw+u72cEyfiNQRSsIqieXkdQduiDoO2WYtgZujDqIhiOXkDQJ+G3Ucss06AOOiDkJEfqIkbGN/AjQfYcPw61hO3oCog2gA/gxkRh2E1Ihfh7N/iEgdoCQsTiwnbyBwTNRxSI1JB8ZGHUR9FsvJGwbsG3UcUmPSgcuiDkJEAkrCfu5yNBFxQ3OMSlZsk8ujDkBq3K9iOXntow5CRJSE/SiWk9cZODnqOKTGGXBT1EHUR7GcvB6A5h9seJoB50cdhIioTli8CwEVpWuYDo3l5PXKz83+JupA6pmL0WdEQ/V/sZy82/Nzs4ur37SBevvqYTW6vzHjEqo7dtVVV3V+8cUX26elpXlaWhp//etf577//vvNL7300oSLtlZ29NFHxw455JCCM888c6PK+VK3qSUMiOXkNQfOjToOSRoDfhV1EPVJLCevFfCbqOOQpOkInB51EKnm7bffbv6f//ynzZQpU6bPmjVr+jvvvDNrhx122HD//fd3Kioq0vdxCtKTHvgVoPo5DdsZsZw8zYGWuLOAVlEHIUl1uSb3rl0LFizIbNeuXWnTpk0doEuXLqVPPvlk26VLl2aOGjWqz2677dYH4J///GernXfeud+AAQP6H3TQQTsUFBSkAbz33nvNdt11174DBw7sv+eee/aeO3euzlqu51L+DRh+CF0SdRySdF2Bg6IOoj4IZ4y4OOo4JOl6A4dHHUQqOeKII1YvXLiwUSwWG3TKKaf0zMvLa3Hdddct7dixY8n48eNnffLJJ7MWLVqUcdttt3WZMGHCrOnTp389dOjQtTfffHOn9evX20UXXdTz5Zdf/mbatGlfn3766cuvuOKKblE/Jtk2Gu8B+wE7RB2E1IpfA69FHUQ9cDTQM+ogpFZcDPwr6iBSRevWrcunTp06/Y033mj53//+t+Xpp5/e6/rrr58fv827777b/JtvvmkyYsSIfgAlJSU2bNiwosmTJzeePXt203333bcPQHl5OVlZWSVRPA6pOUrC4MioA5Bac0gsJ69Tfm72kqgDqeM0cX3q2DOWk9cuPzd7RdSBpIqMjAwOOeSQwkMOOaRwp512WvfEE0/8rFyIu7PnnnuufvXVV7+LX/7pp5823XHHHddNmjRpRu1GLMmU0t2RsZw8Aw6LOg6pNRloMPJmxXLyWhC0DktqSAcOjDqIVPHVV181njJlSuOK219++WXT7t27b2jevHlZxbiv0aNHr5k4cWKLqVOnNgZYvXp12uTJkxvvtNNOxStWrMh4++23mwOsX7/eJk6c2CSaRyI1JdVbwoYD6lNPLacDf4g6iDrsIKBxtVtJQ3II8HTUQdS6BEtK1KTVq1enX3TRRT1Xr16dnp6e7rFYbP1jjz029+GHH2534IEH9unUqdOGTz75ZNb999+ff8IJJ+ywYcMGA7jhhhsW7LTTTuufeeaZby666KKehYWF6WVlZXbeeectGT58eOqWGWkAzN2jjiEysZy8W4Bro45Dal3X/NzsRVEHURfFcvKeAk6KOg6pVSuBrPzc7LKoA0mmr776Kn/IkCHLo45Dat9XX33VYciQIbGo46hKSndHAkdEHYBEYp+oA6iLwhIeB0cdh9S6tsDuUQchkopSNgmL5eT1AgZGHYdEYnTUAdRRw4A2UQchkTgk6gBEUlHKJmGoPk4qU0tY1faNOgCJTHbUAYikolROwvaOOgCJzI6xnDydkLExnRWZugbFcvJUG06klqVyElazk7dKfaPWsDixnLxGwC+ijkMitX/UAYikmpRMwmI5eZ2A7lHHIZEaHXUAdUw/oGnUQUik+kUdgEiqSdU6YWoFE50N9nO9og5AItc76gBq0+DHBtfo98CU06ckVHfsiSeeaHPaaaf1+uKLL6btsssum63xddNNN3W89NJLl7ds2bK8ZqKUuiYlW8KAQVEHIJHbPuoA6hglYZJSSVhUnnnmmXZDhw4tevzxx9tVt+3999/fqaioKFW/p1NCqj65/aMOQCLXNOyWloCSMOkVy8lL1e+EWlFQUJD22WeftXjkkUfy//Wvf7UDeO2111rus88+O1Zsc9ppp/W8++67299yyy0dly5dmjlq1Kg+u+22Wx+A+++/v12fPn0G9O7de+B5553XDaC0tJSjjz461rt374F9+vQZcOONN3aM5tHJ1kjV7kiNfRCAGKDJvANKwqQx0AOYG3UgDdXTTz/dZvTo0QU77bTT+rZt25a+9957zTa17XXXXbf0b3/7W6fx48fP6tKlS2l+fn7m2LFju33++edfZ2Vlle611159nnjiiTaxWGzDokWLMmfPnj0NYPny5em194hkW6Xqr56+UQcgdUIs6gDqkB2iDkDqBHVJJtFzzz3X7sQTT1wJcPTRR6944oknqu2SrPD+++83HzlyZGHXrl1LMzMzOf7441eMHz++Rb9+/dbPmzev8emnn97jhRdeaNW2bdsGPf1UQ5NySVgsJ68xwTQdIttFHUBdEMvJy0D/CwkoCUuSJUuWpH/88cctL7jggu26des2+N577+386quvts3IyPDy8p/G3a9fv962ZL9ZWVllU6dOnb7PPvsU3nfffVknnHBCrKZjl+RJuSQMaBV1AFJnxKIOoI7oSeoOTZCfUxKWJE888UTbI488csXChQunLFiwYMrixYsnd+/efUNZWRlz5sxpum7dOlu+fHn6+++//+N3VPPmzcsKCgrSAPbaa681n3zySctFixZllJaW8vzzz7cbPXp00aJFizLKyso444wzVo0bN27BlClTNtnFKXVPKn7wtow6AKkzYlEHUEdoPJhU2LH6TRqGREtK1JTnn3++3W9/+9vF8csOP/zwlU8//XS7Qw89dGW/fv0Gdu/eff3AgQPXVqw//fTTlx944IF9OnXqtOGTTz6ZdcMNNywYNWpUH3e3MWPGrDrllFNWffTRR01//etfx8rLyw3gpptuml+bj0u2jbl71DHUqlhO3s7Al1HHIXXCV/m52TtHHUTUYjl5pwKPRx2H1Anj83OzR0cdRDJ89dVX+UOGDFkedRxS+7766qsOQ4YMiUUdR1XUHSmprHHUAYjUMY2iDkAklSgJk1SmL5yAqnFLBf0wEalFqZiEaUyYVMiMOoA6QkmYVGjIP0zKK8ZNSeoIn/M6+xmngfkpqJGVrT2v5wf/e4F5mSu8KHUnbfb01ZAddRR1QZ39gKpNZ/f47N9TMheXTyld3KyM8tQseOmZSxrwe2LqsmXLBmRlZRWkpaWl1mDoFFVeXm7Lli1rDUyNOpZNScUkLKW/cDLSbP1rzcd92Kdj31YXt+q559vFi7766+pZa78pLdoFSLVTm3UWUSCl3xMVLlv/z1ZN+hw8ophWpe8VL/361bXzV09c/0P7Qi/tR+q0mk6JOoBkKS0tPWvx4sUPLl68eBCp2QuUisqBqaWlpWdFHcimpGIStiLqAKKSZpT+rfu7b/VZOv0QitqOT2vdJe2XTbvu8sumXSkqLyl8rOjb958uym+52kuGRB1rLVFl6UDKJ2EtGmWsaFQ4fwdW5H/QpP32o/dv2mXo/k27ALC2vHTN+OIlk19bu6Dw8w0rstYESVlDbSkriTqAZBk2bNhS4LCo4xCJpyQsRRiUjx2y4e0xM+4fBUDhkhbx61ukZba8oFXfPS9o1ZfvSorm3r16Rv47xUt6leHdIwm4dhRHHUAdkfJJWKeWTRbbmvIuzHxzN0ae9T1p6T0r1jVLy2h+ULNuww5q1g2AovKSwv8VL5mRt3bB2kkbVmSt9bJ+NJyWlQabhInURUrCUoNfvkePd0+eNGZHqxgTV7S006Y23j6zxXZ3th++nbv7/4qXTPrr6plFs0oLdwGa11bAtWRp1AHUESmfhHVr06yANd6L8rLGzP7fUvru33NT27ZIy2x5WLPuux7WLPh9srq8pOC/6xbNzFu3YN3kDas6r/Oy3tTfpEw/TERqkZKwFHD+L/pMOG3miY3Ty9f/VA27eHU33NdhtsmB+WZm+zXtvPN+TTuzpry06Imibz94as13zVeVlwwBGsJZRkuiDqCO2BB1AFHr1rJxsVWUZ1g2ezg9d/2Ipm12T+S+rdIyWx/ZvOeII5sHeduqsg2r3ipeNPP1tQuKp5Ss6rrey3ek/rxfFle/iYjUlFRMwlZGHUBtOnNEr3ePWHFfWqui2b+otMooL51HemafRPbTPC2jxbmt+vzi3FZ9+L50zfy7V8/45r/rFm9fim+yxaAeUBIWmBt1AFHr2qTk52fLTXl5B3Y9bTVmW1xXsE16ozbHNt9ut2ObB3Oiryhb/8Ob6xbNfn3dgg3TNhR020B5XZ4makGiG5pZOjARWODuh5jZU8Bg4DV3vybc5jpgqru/lIxgReq7lEvC8nOz18Ry8taTAkUJT9gl9u4+TWZ37D35wao/9Des+YGmbbZ4vz0zmnf/Y7th3d3dJxQvnXxv4czVM0pW7wy0qO6+dYySsMAcgpMUGupg82plNSr9eX2sDWs6sXDyBLoN2Xtb990uvXH7E1rE2p/QIgbAsrLiZW+sWzj732sXls0oWd29hPLtt/UYNWjhFmx7MfA10MrMdgLWuftOZvaWmbUmONt6N3e/JRmBijQEKZeEhVYCnaMOIpkOH9R9wl5d0ofs+c7pa2xTCefaFeu3JgmrYGY2qmmnnUY17cS68tK1T63J/+CJom+brijfsAv1o/tFSRiQn5u9IZaTl08KT+TdKn3Dxt3y332wJ536Tyej0YCaPFZWepOsU1vskHVqix0AWFy6bvG/1y385o11C8tnlazeLuLW5YTKtphZd4KCYrcClxEM6G9qZmkE5TzKgJuAG5IUp0iDkKpJ2Lc04CRs/z5d3h+1Q8df7Dt+1BdpXrbrJjcsXJJJ+x1q5JhN0zKandVyx1+c1XJH5peuXXDP6hlz3ly3KFaKb1cjB0iOeVEHUIfMIkWTsDSjtIkXV9WKm8a014ydjiwj6HpLis4ZTTuf2bJX5zNbBv/+BaVrF76+bsF3b65b5LNLCmO1fIbyNwludxdwJeGJPu7+tZktA74AngB2BNLc/YtkBCnSUKRqEvYlsEfUQSTDnttnfXRQ/667D5/82/ebrl8yarMbr17SNhkxdM9o1u337YZ2+z3wfvHSKfeunrlqWknBEOrevJ3Tow6gDpkJHBR1EFFo37zxwsyyNaVVrixc3J/VC8fTutvm30s1qFtGs66/adm7629a9gbg+9I18/PWLsh/a90ivi0t2qEM75rEw8+qbgMzOwRY6u6fm9noiuXufkncNq8C55jZtcAQ4C13/3uNRytSz6VqEtYgf50N79Hus6N26jm865K3JvdY9Mqe1d5hzfKk/8Les0nHwXs26Uixl637R1H+h48Xfdt4efn6XYj+FP4i4PtENjSzNsCDwCDAgV8BRxAkLZPc/bRwu1OADu5+V82Hm3Qzow4gKl1bNfshs3TxprvPp78+lJG/XoylRdJ63jOjeffzWvXpfl6r4Bya70qK5r62bv73b69bnJZfWrRjOWyy3MwWWjrl9CmrE9juF8BhZnYw0IRgTNiT7n4KgJkdDnxOMEa0l7sfZ2b/MbOn3H1tDcUq0iAoCWsgBnVuM+mkodsPbla8+IfdJl3Y3RIZZF22oRVevhRL65js+JpYetMzW/ba48yWvVhYunbRXwpnzfr32oU9IxyUPHXK6VMSnT/uz8Ab7n6MmTUCugBDw0HID5rZYILB7WcCByYp3mRL2SSsW+tmRZmlRU02uUFZSUu+fX8qvfauE0MYts9ssd2Fmf22u7BVPwDmlBR+9+ra+fP+W7w44/vSNb0dsrZy1wm9Btz9auBqgLAl7Iq4BCwTuIRgvFhvgh8tEHweNQKUhInESdUkbBrQYM6Q7J3Vcuqvduu1Y5qXZez7waFLDd8p4TuXrl9IZtOkJ2HxumY063Jr25273Np2Zz4uXjbt7tUzV0wpWbUT0LoWw0goEQ/P8tobOAPA3TeY2Qog08yM4AywEuAK4B53r68Vx1M4CWtanlm8uuruyAqLpu5O96Gf0bjFpsdYRmTHzJbbX9q6//aXtu4PwNcbCr7JW7dgwf/WLc6cX7a2j0P7BHf1cQ2EcwHwmLuvNbPJQDMzmwK87u6ramD/Ig1KSiZh+bnZJbGcvKnAsKhj2VY92zafed4efXqYWYs9Jp41vlHp6i0bu1K8upDMTdZrTbqRTbIGjmySxXovK35uzdyPHin8JnNZ0F2Z7HIJibaGbg8sAx4xsyEE3SwXA68TjC38L1BAcCr+zckItDbk52YvjOXkFVIxo0IKyWrRpFFGUVH1swZMebkzw07abIHjuqB/o9a9+jdq3euK1gNwd59WUjD71bXzF75bvKTJorJ1fRw2NRb0gy09lru/C7wbd/uuuOsOnLil+xRJJSmZhIW+oJ4nYV1aNf3u4r37tTOz1tt//9THHX/4cMsHDxctK6dlTQ0p2XqNLb3JqS122P3UFjuwpGzdkr+snjUjb+2C7kksbPlegttlAEOBC939EzP7M5Dj7r8D/gBgZg8C15vZWcAvgcn1tDbSx8D+UQdR21o2yWyTWVq4rNoNiwt6sHTmeDr1q7VB+tvKzGxQoza9BzVq0/tqBlHuXj6lZNXMV9fOXzy+eEnTxWXFffmpBfrDKGMVSUVRD46O0udRB7AtOjRvPO+K0QOapJlltSyanT9k+o1bV8uocEmzGg5tm3VKb9rpprZDRn3e7eBeD3fYffrOjdpOsJqd6SB/yulTqj0LLDQfmO/un4S3XyBIygAws4qaaDOBY939OKCXmfWuwXhry3+iDiAKjdPTumSWFiY2PnDOu3tQVjonySElTZpZ2pBGbfte12bwqLc6jxnxVdfslo922P3rY5r1fH7K6VOqT0RFpEalchL2btQBbK02TTIX5+w30NPSrEtaWfG60R8evcG2tvxD4dJaHQ+2pXZt3H7AE1m/2Hti14ObX9N60Med0pt8Bmx+/E713kp0Q3dfDMwzs77hov34eWmLm4HfERSorOhCLScYK1bfpFwS1jQzvcDM2mSUFiWWhHl5JjPeWEPQ1VbvpZmlDWvcvv8NbXfSZPYiEUjZJCw/N3smCdTEqWtaNM5Yfs3+g9ekp6X1BBj98bGfZ5QXJzT/Y5XWreqOe52fwLmRpTU6sUVs5Nudx+z6v85jVh7brOf4xpY2eyt39+YWbn8h8FQ40Hhn4DYAMzsCmOjuC8NBx5PCQchN3P2rrYwtMvm52VPZgrkDG4JOLZssAsgsLUp8hoeV3w9hzfL3kxZUNBL+YSIiNSdlk7DQK1EHsCWaZKQXXLf/4OWZ6Wm9APrP+tN7rQtnVl8PbLM8HS+rV5Xjs9KbZF3fdqdRE7se3PvxDnvMGNao3QSDFQnevQx4e0uO5+6T3H24u+/k7ke4+8pw+UvuPjZuuyvcfbC7n7wl+69j3og6gNrUrXWzVQAZpWu2bJqtqa8OxP2HZMQUgQ3AO1EHIZKKUj0JeznqABLVKD1tzfUHDP6+cUZ6P4B2K7+Y0ffb+2rmdPkNa5fXyH4isEvjdv0ezdpj74ldD27xuzaDP+6S3vRTNt9d+emU06esqqXw6qMXow6gNnVr3Ww9QHrZ2i37LCwtbsf3n32dlKBq378ZMy6RIq0iUsNSPQn7EFgYdRDVyUiz4t/9cvCsppkZgwEySwoK9vr0lOYWVKvedmtXrquR/USokaU1Oq75diPf7LzfiHc6j1l5QvPtxjex9KpqXz1b68HVL28Dq6IOorZ0adU0DSC9rHjLS6LMm7gnJesm1XRMEXgy6gBEUlVKJ2H5udnl1PEv5TSzkmvGDJ7conHmLgC4+74fHDYzzUt71NhBCpc0qFIlHdKbZF3bZvCoz7oe1PeprF/MHNGo/XiD5QQtZP+IOr66LD83u4R61k2/Ldo1a9QMIL18K5IwgKmvtKwPYyo3owB4NeogRFJVSidhoaejDmBTDMqv2m/gxLbNGo2oWDZ06tXjmxUvGrG5+22xwiW1Wam+Vu3UqG3fh7J2H/VF14Pb3NJmyMNTTp+is8Cq93zUAdSWZo0yOgCkl61vtFU7WPNDL1bkf1SjQdWuFxkzbn3UQYikqpRPwvJzsydSN6ds8ctGD/iwY4smu1cs6LLk7Uk9F/xzrxo/UtGybjW+zzomw9IyDm/e499Rx1FPvAHMjTqIZDMoTzfrCpDmJZlbvaOZb46gvCyhyeDrIHVFikQo5ZOw0F1RB1DZ/+3Zd0L3Ns1+PPOxSfHiJbt9+X/dEpqYe0uVFrfDPdGzC+urhcBrUQdRH+TnZpcCd0QdR7K1bdZoUTjhNGnlJVvXEgZQXtaU2f+rjy2s+dTjeokiDYGSsMAjwOKog6jw6912HN+rQ8sfp0ax8tLS/T44dLFRnpW0g5ZtaOj1oR5hzLhtLfKaSh4kmDOzweraqtmPZwWblzXepp0tmz2cdavqW7fknxgzrkEUnRWpr5SEAfm52eupI61hJw2NvTuoS5ufzU23+xfnvN+opGBIUg9cvLogqfuPVgnw96iDqE/yc7PXAfdEHUcydWvTrLDiunn5tk/KPeXlHXCvL6UelhEk2iISISVhP/kbwZlCkTlicI/xu/bsMDp+WWzeM590Wv7e6KrvUYPWLG/IrUQPMGZcgx/jlAT3AkVRB5Es3Vo1LfvpVvm2l3vZsKYTCydP2ub91I67GTOu3pemEanvlISF8nOzVwN/ier4B/Tt8v7eO3TcO35Zi6Jv5+487fp+tRLA6iXb3hJQN60hmN9RtlB+bvZK4IGo40iWji2bxA/Gr5m5Pr/7YE9KN0yvfsNIFRIk2CISMSVhP/dnoNZ/He69Q8ePDujXdQ8z+3HqlLSy4uJ9Pjqy2KB2ykcULelQK8epfX9izLglUQdRj/2JYFqbBqdVk8zWAGll6zfU4AkvaUx7zXAvq37TyNzHmHGrog5CRJSE/Ux+bvZS4OHaPOauPdt/esTgHsPN7GfPxahPTpiYUbaub60FsnZljzr+xbE1lgO3Rx1EfZafm70AeCrqOJKhcUZ6J4D0snVra3THhYv7s3phXZ3gezUpcOarSH2hJGxjt1BL07YM7tLmyxN3ie1UcZp8hX5z7nm/zerp2zgx9xby8kZ4+fxaPWby3caYcYXVbybVGAc0qIKejdPTitLMOgBklK0prvEDTH99KF5eZ864jjNWLcMidYeSsEryc7MXAznJPk6frFZTzhzRq4+Z/WxAcNtVk2b2m3PPsGQfv0ol6+pjraNN+R74a9RBNAT5udmzaWDj6jq2bLKo4npG6ZqaH4JQVtKSb9//rsb3u22m0cDPeBWpb5SEVe0BIGndCbF2zWecu0fvnmbWPH55Zsnqgr0/ObmJQTSD5NetrNlumWhdr+lYatTvgUlRB1FTurVutrLiemZpUXLGvC2aujvriz5Lyr63zoWqlSdStygJq0J+brYD55CEAcldWzX95sK9+nUws40G3O/z4RFfp3nJdjV9zIQVLm0or4f3gCeiDqIhCavon0kwCXq91611sx9bvzKSlYQBTHm5M+51oRTEc4wZ907UQYjIzzWUL90al5+bPZ3g13+NyWrR+PvL9xnQvGIsSrydp143vvm6+SNr8nhbrHBJy0iPXzNWAacwZlx51IE0NPm52ZOo4fdEVLq0avrjmchJawkDKC7owdKZnyZt/4kpBC6POAYRqYKSsM27lRqa3LtN00aLrtp3UFqaWefK6zotffer2PznflETx9kmRUu7Rh1CDTibMePq62TK9cHNQF2vg1Wt9s0b/9jln1lamNyzgue8uwdlpXOSeozNu4gx4xraSTciDYKSsM0IpzM6B9im+dVaNs5Ydu2YQcXpada98rrGxUuX7f7FuZ0NMrblGDViw9qO9Wjalao8wphxz0cdREMWvid+BdTrlsbmjTLaV1zPLC0sSerBvDyTGW+swT2KeRpfYMy4RyM4rogkQElYNfJzs8cDN27t/Ztlpq+6bv/BKzLS07bfaKWXle33waELjPJO2xJjjSorqa+/mGcBF0YdRCrIz83+hDoy1+pW8ow0+7HVN6NkdfITypXfD2HN8tquHTYXOLuWjykiW0BJWGJuAl7Y0js1Tk8ruu6XOy1olJFeZdHVkV+c937jkpU7b2twNWp94crqN6pzSoCTGDNuTdSBpJDrgM+jDmJrtGmSuSS+NExmaVHttOpNfXUg7j/UyrGC98RxjBlXH9/PIilDSVgCwrMlT2cLTtHPTLN11/1y8JymmekDq1rfc/4Ln3Ze9u7eVa2L1Jofkts1kxzXMWZcvUwI6qv83Ox1QDZQ12phVatzq6bL4m9nltZSPd/S4nZ8/9nXtXMwLmfMuKhPCBCRaigJS1B+bvZa4HCg2oKmaWYl1+w/eGqLxpk7V7W++Zr8eUOnXtPXwKpaH6nCJY2jDmELPY+mJopEfm72EuAgYEXUsWyJ7m2a/WzcY0ZpLTagzpu4JyXrJiX5KPcwZpyKsorUA0rCtkB+bvb3wNEETf1VMijL2W/gxDZNG+1a1fq0svXr9/3wiKJam5h7SxUuaV/9RnXGv4GTGTMuigHPAuTnZs8EDgNqfuqfJOnWutnPap3VahIGMPWVlrgnqyzGC8AlSdq3iNQwJWFbKD83+33g/E2s9sv3GfBRVosmu2/q/nt9evKnGWVr+ycnuhqw9oceEZ3FtaUmAEczZlx97D5tUPJzsz8ATqaenDHZsUWTn52JnFG2pnY/B9f80IsV+R8lYc8TUI08kXpFSdhWyM/NfpAqzpi8aK9+73Vr3WyTE2/3+eZv77crmLxXUoPbVuVlTXFfEHUY1fgcOJQx4+pCJXIB8nOz/wlcGnUciWjTtFGr+NsZZetq/3Nw5psjKC+ryXp204DDNzdVl5k9bGZLzWxq3LLbzWyGmU02s3+ZWZtw+S/CZRPNrHe4rI2ZvWlm+t4QqSF6M22l/NzsscDYitu/Gbnju9u3b7HJgfZtCqbOHjD7zqG1ENq2K123JOoQNmM6cABjxtXnemYNUn5u9t3An6KOozpNMtM7xt9OL1tX+zX6ysuaMuu/1Y4vTdA3wEGMGbeqmu0eBQ6stOwtYJC770RQ5uXqcPnlwMEEXZvnhsuuA25zd7W0idQQJWHbID83+0bg+lOGbf/ugM5tRm9qu4ySwtV7f3x8hkGz2otuG6wrKIo6hE34DtifMeNq6zR/2XJXAA9GHcSmZKbZOoOfJ2Hl69MjCWb5nOGsW7Wt3ZKTgT0ZM25edRu6+wQqnUTh7m+6e8UYuY+BioLSJQSfV82AEjPrBfRw93e3MV4RiaMkbBvl52bfPKxH+1c3t80+Hx05Ld1LNi7WWlcVLa17Z21CPjCGMeMWRh2IbFp+brbn52b/hqC2Xp2T1aLJQjP72es7rWxDo6jiYcrLO2zDLBUfAKMYM25xDUXzK4KTXQDGAY8TtIzdSzCF23U1dBwRCSkJqwFHjuz0J4I6YhsNEh8y/cbxLdZ+v8mB+nXS6iUtog6hko+A3Rgz7tuoA5HE5Odm30BQrT258zJuoa6tm21UTiPNS6JLwjas6cTCyV9uxT3/DfwygS7IhJjZtUAp8BSAu09y95Huvg+wA7Ao2MyeNbMnzazuzPIhUo8pCashR47s9DjBeIsfK1R3XP7elO2/f2qP6KLaSkVLN5pkPELPAPsyZlxNjZ+RWpKfm/134AiglqqhVq97m2YbncxhXhpdEgbw3Qd7UbphSyZFf4pgEP7amji8mZ0BHAKc7JXOjA5bDa8jmLj9BuBK4O/ARTVxbJFUpySsBh05stP/gJHA143XL1+++8TfdDDIjDquLba+sAvuUU8BVE7woX8SY8bVmxpU8nP5udmvEbwnZkcdC0DXVk03Kr9iXtakqm1rURrTXjPcq2s1LAEuZsy4U2qqNIuZHUiQWB3m7lUldacBr7v7CoLxYeXhpX6MbxWp45SE1bAjR3aaBYz4xcQzn06jvEvU8Wwlo7y02oG+SbQCyGbMuJtUiLX+y8/Nng6MAN6IOpb2zRs3rbzMvDzqJAwKF/dn9cIPNrPF98BejBl399Yewsz+QdC139fM5pvZrwnGe7UE3jKzSWZ2X9z2zYAzgL+Ei/4EvE4weft9iMg2s/pRl7OeGtv6HIIPrOg/5LfU0BM/pFnbKLpSJwLHMGbc3AiOLUkUy8lLA34HXANE0gX4+0OHzm6UntY7ftkRb/QptrrwHk3PLGTkr4uwtMo/3l4HTmXMuHo1PZSIVE8tYck0tuB+YDdgawbeRmvtD8maVmVTioHrgV8oAWuY8nOzy8OyLrsA70cRQ2aadf3ZAi8vrxMJGEBZSUu+fT/+tb8eyAEOUQIm0jApCUu2sQWTgV0Jih7WmQHK1SpcUpstFf8GBjJm3M2MGVfbyZ/UsrB7cm+CsydXVrN5jWnZOGOZmTWPX5Zetq5uzbqwaOpI1hd9BrwHDGHMuN+rS16k4VISVhvGFpQxtuDPQH/gxajDScjqJW1r4SjzCboeD1b5idQS1hP7O8F74h+1cczOrZpudIZtRtnaupWEwTKmvnIvQf2vmVEHIyLJpSSsNo0tWMDYgmMITgfPjziazVvzQ48k7r0UuAPoz5hx9SMplaTIz81ekp+bfRJwEMGMCEnTvXWzgsrLMkrX1pUzb0uBPwN9uGru42r9EkkNSsKiMLYgD+hLMCdbfrTBbEJ5SQu8fFES9vwmMJQx465gzLi6Oj2S1LL83Ow3gEEEZUmWJeMY3Vo326isQ0Zp0SYnvK5F/waGMLbgEsYWrIo6GBGpPUrCQmbWw8zeMbPpZjbNzC4Ol//ezCab2eNx255iZpds0wHHFmwIB+73JpguZM427S8ZStbX1HQo64GHgMGMGXcAY8ZNqaH9SgOSn5u9Nj83+yagJ/Abgsnaa0ynlk03miMysyyyJGwN8DdgAGMLDmZsQY0+VhGpHzKiDqAOKQUud/cvzKwl8LmZvQsMdfedzOxBMxtMkCydSVAdf9uNLSgFHmFs68eBEwjOhhpUI/veVsUFhTTaqKzSllgK/BX429ZWvDezhwm6b5e6+6Bw2bMELYkAbYBV7r6zmf2C4IttA3Ciu882szbAc8CB7l6+LQ9Gakd+bnYxwSTgD8Zy8g4ALgN+ua37bdu0UcvKyzJKCmuk6OkW+Jag7tbDavUSESVhIXdfRDA/Gu5eaGZfE/wizwyn7mhGULH6CuAed6/ZD++xBWUE05E8xdjWuxLMRXkC0L5Gj7MlipY5rbZqBqOpwJ3AU4wZt60tDY8SFJT8sSXS3Y+vuG5mdwAVY30uBw4GYgRdvZcTTLlymxKw+ik/N/s/wH9iOXkDgUuBk9nKkhJNMtOzKi/LLC2qrbNx/wvcDbzG2AK9FkUEUBJWJTOLEdQyGk9w9taXBB+iBcBu7n5zUgMYW/AZ8BljW18KZBMkZAdT2wUuCxc3h8GJbOnAJCAPyGPMuI9rKgR3nxA+HxsJk+PjgH3DRSUEyXIzoMTMegE93P3dmopHopGfmz0NOCuWk3c1cCRBS/R+QKtE7p9utiHN2OgXRWbp6mROMJ4PvArcz9iCaUk8jojUU0rCKjGzFgRlJC5x99XAH8ILZvYgcL2ZnUXQPTLZ3W9JWjBjC0qAl4CXGNu6XXjMiku3pB23QuHSTptbC7xNkHi9zphxyRjEX529gCXuXjEv4TiCFrN1wKnAHwlawqSByM/NXgY8ADwQy8nLBPYgSMgOBIYAVtX9OrRovLCqZD6ztKgmk7ANBEVoXwdeZ2zB1zW4bxFpgJSExTGzTIIE7Cl3/2eldbsQfMDPBMa5+wFm9oiZ9Y5LApJnbMEK4JnwAmNb9yYoeLkXQTHYHanplrLigm64F2PWhGB81xSCVsE3gPfqQGHVE4mrMeXukwgmi8bM9iboXrZwDFkJwZi/JRHEKUmQn5tdQtBaPR64OpaT15mfErIRwHaEJx91bdXsB4Ju6p/JKCncliRsNfAhQeL1HvApYwvqSskLEakHlISFwq6th4Cv3f1PVWxyM0GF70yg4iyrcoKur9o3tmA2MJsgZhjbOp3gS6Zv3KUP0I5ggt6KS+XxNOUErVqFQFH4dwHwDfAt64um06Tl9K0dWJ8sZpYBHAUMq2KdEbSAnQDcA1xJ8L+5CLi29qKU2pSfm72YYAzhowCxnLwmBO+Bfm2bNepE8COiO9AZyALaZJYWbqoe1wZgIcF7YX4VlwXAAo3vEpFtoSTsJ78g6MKaYmaTwmXXuPvrZnYEMNHdFwKY2SQzm0LQHflVJNFWFgzs/ya8vL7p7VpnAC0IWs2KGFuwtlbiq3ljgBnuPr+KdacBr7v7CjNrRpBoRpcwSyTCsywnh5cqLfskP53gvZBJ8HmYQfBa+YGxBSqYKiJJZe76nJG6y8z+AYwGOgBLgBvc/SEzexT42N3vq7R9M4Jxar909xIz24ugTMYG4CR311QwIiJSJygJExEREYmAKuaLiIiIREBJmIiIiEgElISJiIiIREBJmIiIiEgElISJiIiIREBJmIiIiEgElISJiIiIREBJWMTM7GEzW2pmU+OW3Wxmk8PK/G+aWddw+dFmNs3M3jOz9uGyXuHciCISETO72Mymhu/PS8Jlvw/fx4/HbXdKxXoRESVh0XuUYMLheLe7+07uvjPwGnB9uPxCgsm67wdOCpfdQjBPoohEwMwGAb8hmDR8CHCImQ0Bhrr7TsAGMxtsZk2BM4G/RBetiNQlSsIi5u4TgBWVlq2Ou9kcqJjWoBxoTDAHYsWUPIvdfXZtxCpSH2yidTmZrVL9gU/cfa27lwLjgSOAzHAy+WZACXAFcI+7l9TAMUWkAVASVkeZ2a1mNg84mZ9awsYBbwOHAv8AfgfcHE2EInXWo8S1LptZa5LbKjUV2MvM2odzlx5MMNfp68CXwCKgANjN3V+qgeOJSAOhuSPrADOLAa+5+6Aq1l0NNHH3GyotPw1oB3xM8At7JXCxu69NfsQidVv8e8rMWgKvAvsATwE3AccCU2oqKTKzXwPnA2uAacB6d78kbv2DBBPJDwV+CUx291tq4tgiUn+pJazuewo4On5B+Gv7DIJf8TcCpwPvE7SaiUgcdy8kya1S7v6Quw9z970JfhDNqlhnZrsABswEjnX344BeZta7po4vIvVTRtQByMbMrHfcOK/DgRmVNvktcLe7l4TdKk4wXqxZLYYpUm+4+x+AP8CPrVLXm9lZ1FCrlJl1dPelZtYTOAoYGbf6ZuBsIBNID5fp/SoiSsKiZmb/AEYDHcxsPnADcLCZ9SX4oJ4LnBu3fVdghLvfGC66B/gMWEUwGFhENqFSq9Q4dz/AzB6p9MNna7wYlo0pAS5w91Xh8Y4AJrr7wvD2JDObQpD4fbUtj0VE6j+NCRORBmdT4yzN7DWCVqm1wAvuPsbMHiJoWVZSJCK1SmPCRKRBCVuXPwL6mtn8cND8z1qlwpaqilapJkrARCQKagkTERERiYBawkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMREREJAJKwkREREQioCRMpI4ys6K4S7mZrYu7fXLU8W0NM8s3szFRxyHbTs+lyLbLiDoAEamau7eouG5m+cBZ7v52dBFtnplluHtpfT/Glqhr8UDdjKmy+hCjSG1QS5hIPWNmaWaWY2bfmNkPZvacmbUL18XMzM3sTDObZ2YrzexcM9vVzCab2SozuzduX2eY2Qdmdq+ZFZjZDDPbL259azN7yMwWmdkCM7vFzNIr3fdOM/sBGGtmvczsf2Fcy83sKTNrE27/BNATeDVszbvSzEab2fxKj+/HFhYzG2tmL5jZk2a2GjhjczFV8b8aYWYTzWy1mS0xsz/FrdvTzD4M/yfzzOyMuMf8uJktM7O5ZnadmaVt5jE3NrM/mtn34THuM7Om4fYdzOy18BgrzOy9in1VEaub2UVm9m34v7s9flsz+5WZfR0+p/8xs+0q3fcCM5sNzK5i303C/+EPYSyfmVmn6p7jcP1vwuMWmtl0Mxta1XMZbnuYmU0Lj/GumfWv9LxeZWaTgTVmpkYAEXfXRRdd6vgFyAfGhNcvBj4GugONgfuBf4TrYoAD9wFNgF8CxcBLQEegG7AUGBVufwZQClwKZALHAwVAu3D9v8L9Nw/v/ylwTqX7XkjQqt4U2BHYP4wrC5gA3FXV4whvjwbmb+axjgVKgCMIfjQ23VxMVfzfPgJODa+3AEaG17cDCoETw8fdHtg5XPc48DLQMvx/zgJ+vZnHfCfwCtAuvM+rwLhw+3Hhc5EZXvYCbBOxOvBOuJ+e4XHPCtcdDswB+ofHvQ74sNJ93wrv27SKfZ8TxtUMSAeGAa0SeI6PBRYAuwIWPr/bbeK57AOsCZ//TODKMOZGcdtPAnpUFaMuuqTiJfIAdNFFl+ovlRKTr4H94tZ1CROVDH5KwrrFrf8BOD7u9ovAJeH1M4CF8YlB+CV8KtAJWB//hRkmLe/E3ff7auI+AviyqscR3h5N9UnYhLh1m42piuNPAG4EOlRafjXwryq2Twc2AAPilp0DvFvVYw4TkzVAr7hluwPfhddvIkjodkzgOXbgwLjb5wP/Da//mzARDG+nAWvjEiIH9t3Mvn8FfAjsVGl5dc/xf4CLq3tNhrd/BzxXKcYFwOi47X8V9XtJF13q0kXNwSL1z3bAv8ysPG5ZGcEXaoUlcdfXVXG7RdztBe7ucbfnAl3D42QCi8ysYl0aMC9u2/jrhF1cfyZo8WkZbr8yoUe1afHHSCSmeL8mSIRmmNl3wI3u/hpBa8w3VWzfIdz/3LhlcwlaEKuKJ4ugdenzuHiMIJkDuJ0gkXwzXP+Au+duItbK+654HiB43H82szvi1lsY19wq7lvZEwSP+Zmwe/hJ4Fqq/39u6v9Ula5xseDu5WY2j03/70RSnsaEidQ/84CD3L1N3KWJuy/Yyv11s7hvYIKusIXhcdYTtCJVHKeVuw+M2zY+eQO4LVw22N1bAacQJAub2n4NQRIDQDgWKavSNvH3SSSmn+7oPtvdTyToZvs98IKZNQ/306uKuywnaFXcLm5ZT4IWnariWU6Q1A6Mi6e1hydVuHuhu1/u7jsAhwGXxY+5q0KPSsddGPe4z6n0nDd19w83EdfPuHuJu9/o7gOAPYBDgNOo/v+5qf9TVcdbSNz/LXxN9WDT/zuRlKckTKT+uQ+4tWJgtpllmdnh27C/jsBFZpZpZscSjDt63d0XAW8Cd5hZKwtOCOhlZqM2s6+WQBFQYGbdgN9WWr8E2CHu9iygiZllm1kmwVinxpva+ZbGZGanmFmWu5cDq8LF5cBTwBgzO87MMsysvZnt7O5lwHME/9+W4f/4MoKWo6riKQf+DtxpZh3DY3YzswPC64eY2Y5hQlJA0GJZXtW+Qr81s7Zm1oNg7N+z4fL7gKvNbGC439bhc5UQM9vHzAaHSe5qgkSzPIH/54PAFWY2zAI7xp0QUPm5fA7INrP9wufycoIELz5RFJE4SsJE6p8/EwwEf9PMCgkG6e+2Dfv7BOhN0KpzK3CMu/8QrjsNaARMJ+hWfIFgDNqm3AgMJUg48oB/Vlo/DrguPHvuCncvIBj79CBBi8kaYD6btyUxHQhMM7Migv/bCe6+zt2/Bw4mSBRWEAwYHxLe58Iwjm+B94GngYc3E89VBAPQP7bgDM63gb7hut7h7SKCkwT+6u7vbGZfLwOfh/HkAQ8BuPu/CFryngmPMRU4aDP7qawzwf9pNcGYwvEEXZSwmf+nuz9P8Jp4muBEhpcIBv/Dxs/lTIKWz3sIXkuHAoe6+4YtiFMkpdjPh4KISCqxoCzDWe6+Z9SxpDozc6C3u8+JOhYRqR1qCRMRERGJgJIwERERkQioO1JEREQkAmoJExEREYlAvSvW2qFDB4/FYlGHISIiIlKtzz//fLm7V65/CNTDJCwWizFx4sSowxARERGplpnN3dQ6dUeKiIiIREBJmIiIiEgElISJiIiIREBJmIiIiEgElISJiIiIREBJmIiIiEgElISJiIiIRKDe1QmrLbGcvKhDaFDyc7OjDkFERKROSVpLmJn1MLN3zGy6mU0zs4ur2Ga0mRWY2aTwcn2y4hERERGpS5LZElYKXO7uX5hZS+BzM3vL3adX2u49dz8kiXGIiIiI1DlJawlz90Xu/kV4vRD4GuiWrOOJiIiI1Ce1MjDfzGLALsAnVaze3cy+MrN/m9nATdz/bDObaGYTly1blsxQRURERGpF0pMwM2sBvAhc4u6rK63+AtjO3YcA9wAvVbUPd3/A3Ye7+/CsrConIhcRERGpV5KahJlZJkEC9pS7/7Pyendf7e5F4fXXgUwz65DMmERERETqgmSeHWnAQ8DX7v6nTWzTOdwOMxsRxvNDsmISERERqSuSeXbkL4BTgSlmNilcdg3QE8Dd7wOOAc4zs1JgHXCCu3sSYxIRERGpE5KWhLn7+4BVs829wL3JikFERESkrtK0RSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIRSFoSZmY9zOwdM5tuZtPM7OIqtjEzu9vM5pjZZDMbmqx4REREROqSjCTuuxS43N2/MLOWwOdm9pa7T4/b5iCgd3jZDfhb+FdERESkQUtaS5i7L3L3L8LrhcDXQLdKmx0OPO6Bj4E2ZtYlWTGJiIiI1BW1MibMzGLALsAnlVZ1A+bF3Z7PxokaZna2mU00s4nLli1LWpwiIiIitSWhJMzMmppZ3605gJm1AF4ELnH31VuzD3d/wN2Hu/vwrKysrdmFiIiISJ1SbRJmZocCk4A3wts7m9kriezczDIJErCn3P2fVWyyAOgRd7t7uExERESkQUukJWwsMAJYBeDuk4Dtq7uTmRnwEPC1u/9pE5u9ApwWniU5Eihw90UJxCQiIiJSryVydmSJuxcEOdWPPIH7/QI4FZhiZpPCZdcAPQHc/T7gdeBgYA6wFjgzsbBFRERE6rdEkrBpZnYSkG5mvYGLgA+ru5O7vw9YNds4cEEigYqIiIg0JIl0R14IDATWA08DBcAlSYxJREREpMHbbEuYmaUDee6+D3Bt7YQkkphYTl7UITQ4+bnZUYcgIpIyNtsS5u5lQLmZta6leERERERSQiJjwooIBte/BaypWOjuFyUtKhEREZEGLpEk7J/hRURERERqSLVJmLs/ZmaNgD7hopnuXpLcsEREREQatmqTMDMbDTwG5BOUnOhhZqe7+4SkRiYiIiLSgCXSHXkH8Et3nwlgZn2AfwDDkhmYiIiISEOWSJ2wzIoEDMDdZwGZyQtJREREpOFLpCVsopk9CDwZ3j4ZmJi8kEREREQavkSSsPMIphaqKEnxHvDXpEUkIiIikgISScIygD+7+5/gxyr6jZMalYiIiEgDl8iYsP8CTeNuNwXeTk44IiIiIqkhkSSsibsXVdwIrzdLXkgiIiIiDV8iSdgaMxtaccPMhgHrkheSiIiISMOXyJiwS4DnzWwhQbHWzsDxyQxKREREpKFLZNqiz8ysH9A3XKRpi0RERES2UbXdkWZ2LMG4sKnAEcCz8d2TIiIiIrLlEhkT9jt3LzSzPYH9gIeAvyU3LBEREZGGLZEkrCz8mw383d3zgEbJC0lERESk4UtkYP4CM7sf2B/4vZk1JrHkTUSEWE5e1CE0KPm52VGHICI1JJFk6jjgP8AB7r4KaAf8NplBiYiIiDR0iZwduRb4Z9ztRcCiZAYlIiK1Sy2WNUstlpIIdSuKiIiIREBJmIiIiEgEEkrCzGw7MxsTXm9qZi2TG5aIiIhIw5ZIsdbfAC8A94eLugMvJXC/h81sqZlN3cT60WZWYGaTwsv1WxC3iIiISL2WSImKC4ARwCcA7j7bzDomcL9HgXuBxzezzXvufkgC+xIREUlpOnmi5kV9AkUiSdh6d99gZgCYWQbg1d3J3SeYWWzbwtvYzJkzGT169M+WHXfccZx//vmsXbuWgw8+eKP7nHHGGZxxxhksX76cY445ZqP15513Hscffzzz5s3j1FNPBWDxtz/8uL7ViCNptuNulPwwnx/+c+9G92+9xwk0je3MhiXfsuK/D2y0vs3ep9Oke3+K53/NqgmPbbS+3X5n06jTDqzLn0TBh89stL79Af9HZvvurJ3zCas//ddG6zsccjkZrbJY8/UECr98faP1WUdcTXqz1hRNeZuiKW9vtL7jsWNJy2xC4Rd5rJnx3kbrO5+UC0DBJ/9k3Tef/mydZTSm03E3ArDqg39QPPern61Pb9qKrCOvAeDqq6/mo48++tn67t278+STTwJwySWXMGnSpJ+t79OnDw88EPxPzz77bGbNmvXjusXf/kCjjjvQbszZACx/9Y+UFi7/2f0bd+tH21FnALDsX7dRtm71z9Y32W4IbX5xIgBLnrsBL13/s/VNe42g9W5HBcd7Omej/03zfnvRcmg25SXFLH1+7EbrWwweQ4vBYyhbW8Cyl8ZttL7lLgfTvP/elK5exvLX7thofW2/9kZ/fPvP1t9///307duXV199lTvu2Di+J554gh49evDss8/yt79tPJHGCy+8ABD5a2/l+EdZv2DGz9ZntOxAh0OvAGDF2w+wYem3P1uf2a4b7Q+8EIAf3riHkhULfrY+qtdexXNU05978Z95oM+9bX3tEX651+TnXsVzpM+9mnvtjR59+0bra+Jzr0OHDjz66KM8+uijG62Pl8iYsPFmdg3Q1Mz2B54HXk3gfonY3cy+MrN/m9nATW1kZmeb2UQzm1hSornDRUREpP4z9803alnQBHYW8EvACAq3PujV3TG4bwx4zd0HVbGuFVDu7kVmdjDwZ3fvXd0+hw8f7hMnTqxus22mZt+alYwmXz1HNU/PU92XrO4TPU81S++l+qE2uiPN7HN3H17Vus12R5pZOjDN3fsBf6/JoNx9ddz1183sr2bWwd2Xb+5+IiIiIg3BZrsj3b0MmGlmPWv6wGbWOWxlw8xGhLH8sPl7iYiIiDQMiQzMbwtMM7NPgTUVC939sM3dycz+AYwGOpjZfOAGIDO8733AMcB5ZlYKrANOSKSLU0RERKQhSCQJ+93W7NjdT6xm/b0EJSxEREREUk4iE3iPr41ARERERFJJtUmYmRXyU12wRgRdimvcvVUyAxMRERFpyBJpCftxnshwIP3hwMhkBiUiIiLS0CU0gXcFD7wEHJCccERERERSQyLdkUfF3UwDhgPFSYtIREREJAUkcnbkoXHXS4F8gi5JEREREdlKiSRhD7r7B/ELzOwXwNLkhCQiIiLS8CUyJuyeBJeJiIiISII22RJmZrsDewBZZnZZ3KpWQHqyAxMRERFpyDbXHdkIaBFu0zJu+WqCKYdEREREZCttMgkLK+WPN7NH3X1uLcYkIiIi0uAlMjB/rZndDgwEmlQsdPd9kxaViIiISAOXyMD8p4AZwPbAjQQlKj5LYkwiIiIiDV4iSVh7d38IKHH38e7+K0CtYCIiIiLbIJHuyJLw7yIzywYWAu2SF5KIiIhIw5dIEnaLmbUGLieoD9YKuDSpUYmIiIg0cJtNwswsHejt7q8BBcA+tRKViIiISAO32TFh7l4GnFhLsYiIiIikjES6Iz8ws3uBZ4E1FQvd/YukRSUiIiLSwCWShO0c/r0pbpmjMyRFREREtlq1SZi7axyYiIiISA2rtk6YmXUys4fM7N/h7QFm9uvkhyYiIiLScCVSrPVR4D9A1/D2LOCSJMUjIiIikhISScI6uPtzQDmAu5cCZUmNSkRERKSBSyQJW2Nm7QkG42NmIwlqhomIiIjIVkokCbsMeAXoZWYfAI8DF1Z3JzN72MyWmtnUTaw3M7vbzOaY2WQzG7pFkYuIiIjUY4mcHfmFmY0C+gIGzHT3kmruBsFYsnsJkraqHAT0Di+7AX8L/4qIiIg0eNUmYWbWBDgf2JOgS/I9M7vP3Ys3dz93n2Bmsc1scjjwuLs78LGZtTGzLu6+KPHwRUREROqnRLojHwcGEkzefW94/YkaOHY3YF7c7fnhso2Y2dlmNtHMJi5btqwGDi0iIiISrUQq5g9y9wFxt98xs+nJCqgq7v4A8ADA8OHDvTaPLSIiIpIMibSEfRGeEQmAme0GTKyBYy8AesTd7h4uExEREWnwEknChgEfmlm+meUDHwG7mtkUM5u8Dcd+BTgtPEtyJFCg8WAiIiKSKhLpjjxwa3ZsZv8ARgMdzGw+cAOQCeDu9wGvAwcDc4C1wJlbcxwRERGR+iiREhVzzawtQddhRtzyL6q534nVrHfgggTjFBEREWlQEilRcTNwBvANYdX88O++yQtLREREpGFLpDvyOKCXu29IdjAiIiIiqSKRgflTgTZJjkNEREQkpSTSEjYO+DKcA3J9xUJ3PyxpUYmIiIg0cIkkYY8BvwemAOXJDUdEREQkNSSShK1197uTHomIiIhICkkkCXvPzMYRFFeN747cbIkKEREREdm0RJKwXcK/I+OWqUSFiIiIyDZIpFjrPrURiIiIiEgqqbZEhZl1MrOHzOzf4e0BZvbr5IcmIiIi0nAlUifsUeA/QNfw9izgkiTFIyIiIpISNpmEmVlFV2UHd3+OsDyFu5cCZbUQm4iIiEiDtbmWsE/Dv2vMrD3hvJFmNhIoSHZgIiIiIg3Z5gbmW/j3MoLyFL3M7AMgCzgm2YGJiIiINGSbS8KyzOyy8Pq/gNcJErP1wBhgcpJjExEREWmwNpeEpQMt+KlFrEKz5IUjIiIikho2l4Qtcvebai0SERERkRSyuYH5lVvARERERKSGbC4J26/WohARERFJMZtMwtx9RW0GIiIiIpJKEqmYLyIiIiI1TEmYiIiISASUhImIiIhEQEmYiIiISASUhImIiIhEQEmYiIiISASSmoSZ2YFmNtPM5phZThXrzzCzZWY2Kbyclcx4REREROqKzU1btE3MLB34C7A/MB/4zMxecffplTZ91t3/L1lxiIiIiNRFyWwJGwHMcfdv3X0D8AxweBKPJyIiIlJvJDMJ6wbMi7s9P1xW2dFmNtnMXjCzHlXtyMzONrOJZjZx2bJlyYhVREREpFZFPTD/VSDm7jsBbwGPVbWRuz/g7sPdfXhWVlatBigiIiKSDMlMwhYA8S1b3cNlP3L3H9x9fXjzQWBYEuMRERERqTOSmYR9BvQ2s+3NrBFwAvBK/AZm1iXu5mHA10mMR0RERKTOSNrZke5eamb/B/wHSAcedvdpZnYTMNHdXwEuMrPDgFJgBXBGsuIRERERqUuSloQBuPvrwOuVll0fd/1q4OpkxiAiIiJSF0U9MF9EREQkJSkJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCgJExEREYmAkjARERGRCCQ1CTOzA81sppnNMbOcKtY3NrNnw/WfmFksmfGIiIiI1BVJS8LMLB34C3AQMAA40cwGVNrs18BKd98RuBP4fbLiEREREalLktkSNgKY4+7fuvsG4Bng8ErbHA48Fl5/AdjPzCyJMYmIiIjUCebuydmx2THAge5+Vnj7VGA3d/+/uG2mhtvMD29/E26zvNK+zgbODm/2BWYmJej6qQOwvNqtJGp6nuo+PUf1g56n+kHP00+2c/esqlZk1HYkW8PdHwAeiDqOusjMJrr78KjjkM3T81T36TmqH/Q81Q96nhKTzO7IBUCPuNvdw2VVbmNmGUBr4IckxiQiIiJSJyQzCfsM6G1m25tZI+AE4JVK27wCnB5ePwb4nyerf1RERESkDklad6S7l5rZ/wH/AdKBh919mpndBEx091eAh4AnzGwOsIIgUZMto27a+kHPU92n56h+0PNUP+h5SkDSBuaLiIiIyKapYr6IiIhIBJSEiYiIiERASZiIiIhIBJSEiUiDV3kmDs3MUTeFZ9KLpAwlYXVYxReFmel5qqP0ZV73mZlVlL4xs6EAKoVT95jZYODXZtYt6likavq8q3n6cq+jKr44zOww4G/6hVj3VPpyH2lmzaKOSTYW9xxdADxoZl0jDkmq1hUYAxys56juqfR5d4iZ7RV1TA2BkrA6KkzADgZuBJ539w36FVK3xH0gXUhQE6dttBHJppjZEcCZQLa7LzSzWLQRSYWKzzV3/w9wPzAKOEyJWN0S93l3GfA7YHH8evXYbB390+qo8INpH+AaYGrYIvakmf3SzBorIasbzCyb4Mt9H3dfYGb9zaxHdfeT5IrryrfwemvgaWCImV0P/M/M/mFmraKMM9XFt64AuPubwN3A3igRq3PMbDjB7Da7A9+a2R5mdiqAu5dHGlw9VS8m8E4V8R9IYUvYCuBsoD3BzANrCGYVeFdjWqJR+UsDWA38E/iVmbUEjgM+NrN73X1iJEGmuErPUWbYivwB8DAwEngK2A14ENgZmBBJoBLfunIuMABYC/wd+DPwf0C5mb3u7vOjizJ1VfF5txBYRvBeWk0wJ3RnM+vg7ndGEWN9pySsjogbA3YgwYeRA38A9gQWuvtsM+sLPAp0AeZGFmyKqjQmoitQBswEsgmes/uB+4DrCca3SATinqNzgL3M7EvgVWB0xa/18H3WA/g2skAF+HGs3pHA1cCdQLq7/9bMmgOXAKVm9pi7l0UYZsqp9Hm3C7AeWAncBpwBPOLuX5rZWUDTyAKt55SE1RFhAvZLYBxwDvBvoL27XwcQdkeOA652dyVgEYj7QLqCoKu4LfAC8Ht3XxmuOxwYBtweVZwCZnYeQavxNQRfGnsBjwH/MrNfEbSynK4WljqhPXAYcBZQCFxrZo3d/X9mtg6YqwSs9sV93v0WOJzgR+dk4L/ufl647lfABcDJUcVZ3ykJi5CZdQKaunt+OG7lcIJfGJ0JWljuj9u8G3Cxu79dRROx1JIwGd7P3Q8ys4cJBhHfGa47ErgM+JW7fxNhmCknHIdXCBQBrYBOwKHA6QRfHv8FTjOzAuBFgi8S/ZipZZv47OoMTAS+dveDwu3ONbO17v54rQeZ4iq1gPUhaKXcG8gC9gB+aWZLgQKC8WGnuvv0qOKt7zQwPyJm1pjg118jM2sSvuh/IGgFuxI4w93nmdkpZnaMu//N3d8G1TiqTWY2yMxy4haVAI+Y2XUEifExYStmb+CN8PaUKGJNVWZ2AEEr1/FAD3dfAdxD0CV8qLvvC7xCMH7lVGCDErDaV+nL/UgzO9jMdgVyCT77JobrzgQuBj6OLNgUZWYt4p6jNgQ/bJoDjdx9EfABwUkuPdx9GnCcu0+NKt6GQElYRNx9PcHZWiuAO8ysJ/Ae8Csg191nhWeiXE3wASW1LGydXAc8ZGa7mFlmePsqgi7Hg9y9xMz+j+BLH3dfElnAKSg8O/WPwFjgRXf/LlxVQDCuskN4exhB6/KV7r6utuOUjUocXAT0I3jf7ARcDhxlZs8RnIx0tLvPiirWVBR+vp1lZkeE47weChOvj4AcM2vt7ouBb4BeAO5eFF3EDYO6I2uZmTUl+BUxi+ALYgDBWSaXATcAvyFIyr4ABhKMAXsnqnhTVTgmZT3wjZm1Jxj3UOzu/2dm/wH6E3xpbEfQ5XWivtxrl5m1I2g1vtDdJ8QtvwAodff7zWxyeGZkO+B4d18WUbgpK+6kIyNonfyFu+9jZjcBS4G8cP1IggHeGe6+KsKQU1L4gzKPoEVyFTA8XPUUwVCZ/5jZS8ApwAFRxNgQmXq2apcFU3McQjCoeyhwIsHZjkcTfFFcB7Qg+DDKdPevNQasdoW1ow4B3iF4jtoRDEg9H1jl7leFA7+7EzyPd7v7jKjiTVVm1pngxIhDKr60zeyPwFEEJ7bMcPd7wq7ile6+PLJgU5SZtXT3wvB6F2A58AxBqYPtCLqzis3sROATd9fZqhEys47ApQRd+2Pd/XELirA2Ao4l+F4a7+4zIwyzQVFLWC0xsx0IPnQ+AM4jaD25PfxlvszMMggGEv8RuCvsbwc0Bqw2mVkjd19tZg68S9ClNdDdy8zsXuBiM8sFrg2XZbh7aZQxpyp3X2xmc4G+wCfh4teBawmKSR4XdqHMjirGVGZmrYHTzawQyASODE9o+RY4AhgTJmC/IuiePDC6aMXMRgEjgD8R1Gr7T/j+ucfM9gfe0dnENU9JWO3ZjmA8USlBLak1QDszO8Hdn3H3L8KuytEEX/xSi8Kukr7An8JxRgsJzrKbCvQEvgO+JviAuoogWb4UUJXoiIS/0FcBZ5jZTHdf5e7/C9d1J2hh1swSEQjfQyMJChm/DRQTtCpD0L21AXjZzN4EDgJOCMcbSS2pooclk2CYxZnAXwjOivynme1EkCDvW/tRNnzqjkwyM9uRoAzFlHAMywcE47xeMrOzCSp3Pw/kE3xove7uSyMLOEXFjVvJIhgo/DnBF8VpBMVYb3T3iWF3ciNgnp6n6MQ9Xy0JuiS/Df9OIehKvgA4Wd3Etc/MDgFuBW4B/kUwxOJ44H53vytuu18S/OD8Rt2Q0TGzvdz9vYrrwEkExcB/TzDkYndgop6j5FASlmRhonUfMNTdJ5nZcQRnPF7v7q+GZ6EcTFBM8iR3fyvCcFNS+EvvDuBwd19rZvcR/Arcyd2XWFCscF9gErAjcK6764zViJlZetgl3JLgpJYuBPXBHLhMpUJqXzhO7x8EZ6F+Frd8OPAccGfYvXUMwZg9lTeoZWbWqeIs7vC98yCwwn8qwLoPcBdByZ273X1BVLGmAnVHJomZxYBCd38gHO/1PzPbz92fM7MNwG1mVu7uD4ZnpHR0968iDToFmVmau082s2LgWTM72t3PNbNVwKdmtqu7325BccKjgGuUgNUuMxsBtHb3t+K7UMIELNPdC83st2HLWBuCOmBrIw06da0nqKVXHA6vuIpgdoklwHyCaviDCbq39o8syhRlZv2A6Wb2Z2Ba+P1zK/BrM7sHuMjd3zGzTwhOOtL7KMnUEpYkZnYlwcDuL9y91MwuJvi1vp8H820dTvBr41p3fzq6SFOXmQ0lGBz8h/D2PwimUDnEg0mfbydIvPZ29wXhoP0NEYaccsL3yc0EpSj+V/H/N7PhrgnS65xwbOVlwC8JSuy8DbxPMJ7yEIJhFwuAqe6eH02UqSscK/kMwVyqY4B54fWVBGUnBoW3TwNO0XOUfErCksjMOgBvAdnuvjAuEds37Jo8Elhe0R8vtSssRdGcoBtrdtii8gxBSYqKROyvBFMT7URwoqoG4tcSM2tEMGH93ytq5YWD8XcgmNz+CiDf3ctVxqXuMLMWwGCCCdJfDuvtYWaPEtQEez7C8FKemf2JYLaPk4HjCH5odiFIni8FFgMPqqu4dqhifg0ysxZhTSLMbHeCavifAM+ZWWd3/zNwPfCZmQ1193+5+3vhr0epJWbWKCwtsZqgWORNwO/NrLm7n0DwvL1kQcHW84F93L1MCVitc4KaecPNbHD45d6N4HNrJsGZxm1BZVzqEncvcveP3P25uATsWILE7Itoo0tdcd8zOfw0m8RCgtkkpvFTAnaLErDao5awGhK+wLsS/HL/nKDC8NHuPj3sax9BMPB7sZldStAcr0H4tcyCgpEjCJ6jkwjmRnuW4OSJRQRjvtaE4/SK3f1otbJEx8wGEkxk34egBthggi+KPQnKhswlmGd1ZWRByiaF77fjCWYCOV5f7tEKv6cygd8RtCgPA3LCs/X7Akv1XqpdSsJqQHhG0D7u/g8zOwe4G7jZ3W+J2+ZuYD+CMUiLwmX6cq9FYSvlMUBvgtOuNxB8Mcwws7YEZwnlAze4e5GZddOZQbUvPFmiPO7sx7YEXxp/IfiSKDSzmwmqrz+pEyXqrnBw/r7ATHefE3U8EggTrvHAX9z95qjjSWXqjqwZw4GTzOxUgoGOZxNUij62YgN3vwh4iXDi03CZErDa1YFg4P0XBGdqzQU2WDC1ykqCX+sDgevDBFkJWC0ys+3Dsx3Lw0SsLBwDVk7w630noIWZHUZwZt2LSsDqNndf5+55SsDqFg+mHcoB0s2sWdTxpDKVqKgB7v6aBTPQH04wtcNjZrYY+JuZrSYYu3IScJYSr+i4+0fhsIiDgDyCQrm3EdQI+4ygQv6xQEs9T7XLfpqMe4mZ3erBZMJp4Ti8AjP7lOCMrTMITpw42zWFisi2+JhgUL5ESN2RW8nMugHbufuHccuOJnhRvxkmYocRnHGSAfxZZwXVPjPbA+jp7s9UWnYQsAzYGWgNfAP8imCeyCURhJqyzGx7d//OzA4l6LJfAvwxTMR+nJvTzLoS1KDCgzlXRWQbmFkz1dSLllrCtkI4uHE/4Ddmdq27TwBw9xfNrJyga3KWu79iZp+F6xZpDFgk2hIUxi2rSILd/cOwRexY4HGgJUEl/L2UgNWucLzXeWZ2PfAaUETwvFxhZpUTsUV6/4jUHCVg0VNL2FYys/YEU9scAdzu7uPj1l1D0NV1lLuXRROhVDCzgwjmQbvV3Z+tSIbN7DxgT3c/OeIQU1ZYC8wIztLax91vNbN9CU6gmMdPLWL6ASMiDY5awraSu/9gZv8kOLnhCjMjLhH7EOhMMKBYIubu/w5bL28Nn6dnw1UrgTXxXV5SO8LK3euAZu4+z8waAyPM7BJ3vytsqTwC+J2Z3ezuJRGGKyKSFErCtoG7rzCzFwiSrRvM7CGC4nd3EEzQrV/udYS7v25mZcADZtaLYI67E4AzlYDVLgumIsohGPvVxcxeAe4FbgcuDlu97gxPdtmf4IQJnQUpIg2OuiO3UDg4eDWwpiLJCrtUDgAuJJgX7cXwjEl1odQxZrYLQfHI9cAz7v51xCGlFDPbh6D46okEJ0N0IhiX9wbBVES7ABcBk9z9Ng0cFpGGTEnYFgirP/8R+K0Hc0FWnEJfsT4TKHPNZSdSJTO7Fihw93vNrIm7F5vZdsC/gOfcPTccE3YacJm7r4g0YBGRJFKx1i0QVrrfANwc3i6vtL6kYpkSMJGfxM1b152gaC7A+rAq/lzgTOCgsF7Yh8B5SsBEpKFTErYZYbVuzKxzOOUNBGNZisysU7hOk2+LVCPuR8kLwC/MbFi4zMMW5GUE4742uHuxu6+LKlYRkdqigflVCKdxKHX3DWY2jGCsV7mZfQ/8FegP/BJ4Qi1eIlvkY+AD4Piwy34iwXtrT4KabpmRRiciUos0JqwK4ZiUY4G3CJKtR4DFBBMIv0cwqLiYYPLnuVHFKVIfhbNNnEUwsfNHBF38xwAnuvtXUcYmIlKblITFCb8cFoUD618HRhMUXH0jXJ8GxIBsgkKtv3P3DyIKV6TeMrOmBBPfHwAsB/4dTiosIpIylITFMbM/Aw8BU4HrgCFAY+Bkdy+otO3ZBF8gx6vOlIiIiGwpDcyP4+4XE9QAewzIdfejCaZOeR7AzHYws+PDzZcRFJFMjyJWERERqd+UhPHTGY5m1sLd8wlOo38y7H68APjezCYDrxAkXxCMCbvY3ddHELKIiIjUcynfHRk3mXM2cBBwpbuvNbPXCOa2Oy5cfzQwz90/jb9fhKGLiIhIPZbySRhAeHr8A8Bv4gfam9lLQBPgoLgpipR8iYiIyDZLye5IM+thZnvELRoN/MPdPzCz9LB4JO5+BFACDK3YUAmYiIiI1ISUK9YajvMaAswzs1buvprgFPntKzZx9xIzGwkscfdDo4pVREREGq6Uawlz93J3fw2YAzxtZvsDbwIHmNlRQGczG0pQoLVdhKGKiIhIA5ZSY8LiBuHvB/QgSEKPBK4FGgE3AGuBbsAf3P2VyIIVERGRBi2luiPDBGwocBNwLjAbcOD3wLXufqiZtQVau3u+BuGLiIhIsjT4JCw+kTKzHQiSr7nuPiVc9jJQDvzJzG539zxgJWgQvoiIiCRPgx4TZmZNgN3D6zsCOwOLgCwzOxjA3VcArxFUyV8STaQiIiKSahr0mLBwQu5Dgf2BwcAeQBlwPtAaeMvd3wq3zdAckCIiIlJbGnRLmLsvIKjzdSTwibsvd/eVwBPACuDQuBYxJWAiIiJSaxpkEhY3F2R/gsm3TwVmmlmumXV29++B14EfgG+ii1RERERSVYPtjjSzAwmmIjrM3SeZ2SjgEIKJt78gqIJ/X9haJiIiIlKrGmpLWE8gFzjZ3ScBuPt44NVwk9uBz5SAiYiISFQaVEtYXDHW7YA73P2YcHkTdy82s8xwSqLO7r5YdcBEREQkKg2iJaxiDBjQPPy7EOhqZpcDhAnY/sCd4dyRS8LlSsBEREQkEvW+WGtc69cBwPlm9hkwH7gIuDEs0PoOcB1wg7uXRxiuiIiICNBAuiPNbC/gr8BZwP8BjYEzgSzgGmAx8JG7/1tdkCIiIlIX1MskLCzCmgVMdvdyMzuWYKqhNcA9wNHuPtfMstx9Wdz9lICJiIhInVBfx4QdAdwN7BLeXgs8CvwN+GWYgB0AXGhmFePENAZMRERE6ox6lYSZ2Q5mdoK7/wV4ExhrZsOB8cALwFfhdnsBdwCfuvuayAIWERER2YR6k4SZWV/gnxW33f0W4APgBqAfwQTc+cAbBIPwr3H31+LOnBQRERGpM+rFmDAzG0Aw8P4Jd3/IzDKBwe7+hZndAAwBbnX3z82sBYC7F2kMmIiIiNRVdb4lLEy4XgEKwwQsnaC1axSAu99IMA3R7Wa2q7sXuXtRuE4JmIiIiNRJdb5OWFjh/kQgz8wuAPYAJrn7nXHb3GJmxZEFKSIiIrKF6kV3JEA4AP8tYIa77x63fCSws7vfF1lwIiIiIluozndHVnD3icBooJ+Z/QbAzPYA/g7MiTA0ERERkS1Wb1rCKoQtYq8DzwODgd+7e160UYmIiIhsmXqXhAGY2a7A/4BT3f2liMMRERER2WL1MgkDMLMWKkMhIiIi9VW9GRNWBVXCFxERkXqr3raEiYiIiNRn9bklTERERKTeUhImIiIiEgElYSIiIiIRUBImIiIiEgElYSIiIiIR+H8N8avD9WxwVQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1478,145 +1478,133 @@ " \n", " \n", " \n", - " 37\n", + " 172\n", " POSCO\n", " KR7005490008\n", " Steel\n", - " 1.7544547184645871 percent\n", - " 2.2 delta_degree_Celsius\n", - " 0.81\n", - " 0.45\n", + " 1.9977053617247646 percent\n", + " 2.21 delta_degree_Celsius\n", + " 0.93\n", + " 0.50\n", " \n", " \n", - " 183\n", + " 25\n", " POSCO\n", " KR7005490008\n", " Steel\n", - " 1.7544547184645871 percent\n", - " 2.2 delta_degree_Celsius\n", - " 0.81\n", - " 0.45\n", + " 1.9977053617247646 percent\n", + " 2.21 delta_degree_Celsius\n", + " 0.93\n", + " 0.50\n", " \n", " \n", - " 182\n", + " 173\n", " POSCO\n", " KR7005490008\n", " Steel\n", - " 1.7544547184645871 percent\n", - " 2.2 delta_degree_Celsius\n", - " 0.81\n", - " 0.45\n", + " 1.9977053617247646 percent\n", + " 2.21 delta_degree_Celsius\n", + " 0.93\n", + " 0.50\n", " \n", " \n", - " 36\n", + " 24\n", " POSCO\n", " KR7005490008\n", " Steel\n", - " 1.7544547184645871 percent\n", - " 2.2 delta_degree_Celsius\n", - " 0.81\n", - " 0.45\n", + " 1.9977053617247646 percent\n", + " 2.21 delta_degree_Celsius\n", + " 0.93\n", + " 0.50\n", " \n", " \n", - " 42\n", - " CARPENTER TECHNOLOGY CORP\n", - " US1442851036\n", + " 178\n", + " GERDAU S.A.\n", + " US3737371050\n", " Steel\n", - " 1.5714884496182226 percent\n", - " 2.2 delta_degree_Celsius\n", - " 8.66\n", - " 0.41\n", + " 1.8640674818926724 percent\n", + " 1.52 delta_degree_Celsius\n", + " 13.39\n", + " 0.68\n", " \n", " \n", - " 43\n", - " CARPENTER TECHNOLOGY CORP\n", - " US1442851036\n", + " 31\n", + " GERDAU S.A.\n", + " US3737371050\n", " Steel\n", - " 1.5714884496182226 percent\n", - " 2.2 delta_degree_Celsius\n", - " 8.66\n", - " 0.41\n", + " 1.8640674818926724 percent\n", + " 1.52 delta_degree_Celsius\n", + " 13.39\n", + " 0.68\n", " \n", " \n", - " 188\n", - " CARPENTER TECHNOLOGY CORP\n", - " US1442851036\n", + " 30\n", + " GERDAU S.A.\n", + " US3737371050\n", " Steel\n", - " 1.5714884496182226 percent\n", - " 2.2 delta_degree_Celsius\n", - " 8.66\n", - " 0.41\n", + " 1.8640674818926724 percent\n", + " 1.52 delta_degree_Celsius\n", + " 13.39\n", + " 0.68\n", " \n", " \n", - " 189\n", - " CARPENTER TECHNOLOGY CORP\n", - " US1442851036\n", + " 179\n", + " GERDAU S.A.\n", + " US3737371050\n", " Steel\n", - " 1.5714884496182226 percent\n", - " 2.2 delta_degree_Celsius\n", - " 8.66\n", - " 0.41\n", + " 1.8640674818926724 percent\n", + " 1.52 delta_degree_Celsius\n", + " 13.39\n", + " 0.68\n", " \n", " \n", - " 195\n", - " TERNIUM S.A.\n", - " US8808901081\n", + " 47\n", + " STEEL DYNAMICS INC\n", + " US8581191009\n", " Steel\n", - " 1.5036486574104078 percent\n", - " 1.73 delta_degree_Celsius\n", - " 50.51\n", - " 0.49\n", + " 1.387395966117666 percent\n", + " 1.4 delta_degree_Celsius\n", + " 4.14\n", + " 0.55\n", " \n", " \n", - " 49\n", - " TERNIUM S.A.\n", - " US8808901081\n", + " 46\n", + " STEEL DYNAMICS INC\n", + " US8581191009\n", " Steel\n", - " 1.5036486574104078 percent\n", - " 1.73 delta_degree_Celsius\n", - " 50.51\n", - " 0.49\n", + " 1.387395966117666 percent\n", + " 1.4 delta_degree_Celsius\n", + " 4.14\n", + " 0.55\n", " \n", " \n", "\n", "" ], "text/plain": [ - " company_name company_id sector \\\n", - "37 POSCO KR7005490008 Steel \n", - "183 POSCO KR7005490008 Steel \n", - "182 POSCO KR7005490008 Steel \n", - "36 POSCO KR7005490008 Steel \n", - "42 CARPENTER TECHNOLOGY CORP US1442851036 Steel \n", - "43 CARPENTER TECHNOLOGY CORP US1442851036 Steel \n", - "188 CARPENTER TECHNOLOGY CORP US1442851036 Steel \n", - "189 CARPENTER TECHNOLOGY CORP US1442851036 Steel \n", - "195 TERNIUM S.A. US8808901081 Steel \n", - "49 TERNIUM S.A. US8808901081 Steel \n", - "\n", - " contribution temperature_score \\\n", - "37 1.7544547184645871 percent 2.2 delta_degree_Celsius \n", - "183 1.7544547184645871 percent 2.2 delta_degree_Celsius \n", - "182 1.7544547184645871 percent 2.2 delta_degree_Celsius \n", - "36 1.7544547184645871 percent 2.2 delta_degree_Celsius \n", - "42 1.5714884496182226 percent 2.2 delta_degree_Celsius \n", - "43 1.5714884496182226 percent 2.2 delta_degree_Celsius \n", - "188 1.5714884496182226 percent 2.2 delta_degree_Celsius \n", - "189 1.5714884496182226 percent 2.2 delta_degree_Celsius \n", - "195 1.5036486574104078 percent 1.73 delta_degree_Celsius \n", - "49 1.5036486574104078 percent 1.73 delta_degree_Celsius \n", + " company_name company_id sector contribution \\\n", + "172 POSCO KR7005490008 Steel 1.9977053617247646 percent \n", + "25 POSCO KR7005490008 Steel 1.9977053617247646 percent \n", + "173 POSCO KR7005490008 Steel 1.9977053617247646 percent \n", + "24 POSCO KR7005490008 Steel 1.9977053617247646 percent \n", + "178 GERDAU S.A. US3737371050 Steel 1.8640674818926724 percent \n", + "31 GERDAU S.A. US3737371050 Steel 1.8640674818926724 percent \n", + "30 GERDAU S.A. US3737371050 Steel 1.8640674818926724 percent \n", + "179 GERDAU S.A. US3737371050 Steel 1.8640674818926724 percent \n", + "47 STEEL DYNAMICS INC US8581191009 Steel 1.387395966117666 percent \n", + "46 STEEL DYNAMICS INC US8581191009 Steel 1.387395966117666 percent \n", "\n", - " ownership_percentage portfolio_percentage \n", - "37 0.81 0.45 \n", - "183 0.81 0.45 \n", - "182 0.81 0.45 \n", - "36 0.81 0.45 \n", - "42 8.66 0.41 \n", - "43 8.66 0.41 \n", - "188 8.66 0.41 \n", - "189 8.66 0.41 \n", - "195 50.51 0.49 \n", - "49 50.51 0.49 " + " temperature_score ownership_percentage portfolio_percentage \n", + "172 2.21 delta_degree_Celsius 0.93 0.50 \n", + "25 2.21 delta_degree_Celsius 0.93 0.50 \n", + "173 2.21 delta_degree_Celsius 0.93 0.50 \n", + "24 2.21 delta_degree_Celsius 0.93 0.50 \n", + "178 1.52 delta_degree_Celsius 13.39 0.68 \n", + "31 1.52 delta_degree_Celsius 13.39 0.68 \n", + "30 1.52 delta_degree_Celsius 13.39 0.68 \n", + "179 1.52 delta_degree_Celsius 13.39 0.68 \n", + "47 1.4 delta_degree_Celsius 4.14 0.55 \n", + "46 1.4 delta_degree_Celsius 4.14 0.55 " ] }, "execution_count": 24, @@ -1705,9 +1693,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQsAAADDCAYAAACVmTQ/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgE0lEQVR4nO2debxd49XHv787RBBTJIZEmhirNKXETM0hCDFGSorW1HqVVlHaUorXrKZSQxXFWyVas5i1poiIubRIBEESGREkWe8f6zmyc3LuPecmN2efe+/6fj77c8559rP3WfvZ+6yznvWsZz0yM4IgCMpRl7cAQRC0DUJZBEFQEaEsgiCoiFAWQRBURCiLIAgqIpRFEAQVEcoi6LBI6iPJJDXkLUtboCrKQtKMzDZH0ueZzwdUQ4bWRtIYSTvkLUcQFJD0mKRDF9X5q6JRzaxL4b2kMcChZvZQNb57QZDUYGaz2vp3tIQ85am1tmht2sL1SRIgM5vTZCUzq+oGjAF2SO/rgF8CbwGTgFuBrmlfH8CAQ4BxwGTgSGAj4CVgCnBZ5rwHA08ClwFTgX8D22f2LwNcC4wH3gfOAOqLjr0oyXEGsDrwSPo8EbgJWDbVvxGYA3wOzABOALYB3mvmWn8L3Ab8BZgGHNqcTCXabWNgZDr2I+DCzL4tgadSm4wDDs5c8w3ABGAs8GugrplrXgw4H3g3fceVwOJNyNOq7V3i/IsBvwc+SNvvgcUy+3cDRqdrfgr4TmZfL2BYuu5JpOcEqE/XNxF4GzgKf8YamnlWTwJew5+/64DOFcowBjgRf1a/KP4OQOn6P0739GXg25lrb/I+AHuk752G/3Z2Bs4EZgMz8WeycM2bA8+le/QcsHnmPI+l457En+U1mv3t5qwsjgGeAVZJDfRH4JYiZXEl0Bnonxri78AKQM/U0FtnHsBZwM+ARmBwaqCC8rkjnX/JdPwI4IiiY4/Gra3FgTWAHZNc3YEngN+Xuo70eRvKK4uvgEG4kly8OZlKtNvTwND0vguwaXrfG5gODEnXvTywftp3A/APYKnUnm8CP2rmmi8C7gS6pmPuAv63GWXRau1d4vyn48/GCqn9nwJ+l/Z9N937TXAFcFBq68XS5xfTtSyJPztbpuOOxJVar3SNj1JeWbySqf8kSbE1J0Pm2NHp2FLXtxPwPLAsrji+Bayc9jV5H/A/jan4s1mH/w7Wzvz4D818R1dcyQ1N7TwkfV4+U/9dYN20v7GWlcXrzPtvtDL+g2pgrrLomdk/CRic+Xw7cGzmAfwAN6UK+0ekhloR1+5Z7TwEeDRz7Ltl5B4EvLCQyuKJzL5mZSrx/U8ApwHdispPAu4oUb8e+BJYJ1N2BPBYqWtOD+ynwOqZss2Ad5pRFouyvd8Cdin6cY1J768gKY7M/jeArZPMEyihAHBL8cjM5/6UVxbZ+rsAb5WTIXPsD5u5vu1w5b0pydqr5D7gCviiJs75GPMqi6HAiKI6TzPX8nwMOL25+5Dd8vYC9wbukJTtJ83GH7YCH2Xef17ic5fM5/cttUJiLNAjfU8jMN67ZoBr5XGZutn3SFoRuBjYCtfudbhWXhiy31GJTFl+hP/b/lvSO8BpZnY3/s/1Von63dL5x2bKxuL/RKXk6Q4sATyfkUe40mmKVmvvEvQoIXuP9L43cJCkozP7O6X9s4GxVtpH0KPoe8eWqFNMcf1KZCh17DyY2SOSLgMuB3pLGgb8AreEmrsPvYB7K5Ab5m/DwjU09Qw0S95Dp+OAAWa2bGbrbGbvL+D5eirTwsA38H+/cfg/XbfM9yxtZutm6mYfeoCzUllfM1saOBC/aU3V/xS/yQBIqsd/gFmyx1Qi09wDzf5jZkNws/wc4DZJS6bzrF7ikIm4ldY7U/YN3H9QSp6JuPJdNyPPMpZxTpegNdu7mA9KyP5Bej8OOLPouVnCzG5J+77RxHDoePzHlj1nOYrrVyJDgWav0cwuMbMNgXWAtYDjKX8fmrrfpb6vuA0L19DUM9AseSuLK4EzJfUGkNRd0h4Lcb4VgJ9KapS0L94PvNfMxgPDgQskLS2pTtLqkrZu5lxL4Y6iqZJ64jcyy0fAapnPbwKdJe0qqRF3Ji7W1MlbKpOkAyV1N/dWT0nFc3DH6w6S9pPUIGl5Seub2WzcYXympKVSG/8cd7CWkmcOcDVwkaQV0nf2lLRTU9dA67Z3MbcAv07PRDfglIzsVwNHStpEzpKp3ZfCu0LjgbNTeWdJW6Tjbk3yriJpOdy5Xo6jUv2uwK+Av1YgQ1kkbZSObcT/aGYCcyq4D9cCh0jaPrVrT0lrp33Fz+S9wFqSvp+ejcG4Yrq7EhmLyVtZXIw7coZLmo47tDZZiPM9C6yJa+czgX3MbFLa9wPcTCx4tm/DfSRNcRqwAe5Mugf3rmf5X/xhniLpF2Y2FfgJcA2uuT8F3isjb0tk2hl4VdIMvN32N7PPzexdvC99HPAJ7lRbLx1zdJLjbeBfwM3An5qR50Tgv8AzkqYBDwHfbKZ+a7Z3MWfgoz8v4SMFo1IZZjYSOAwfiZmcZD447ZsNDMQd1O/i92BwOufVwAO4A3QU89/TUtyMK7638e5eWRkqZOkkz2S8azAJOC/ta/I+mNkIfITwIvzZfJy51sPFwD6SJku6JN2L3fBnYxI+arebmU1sgZxfo3m7nG0XSQfjzp0t85alI9AR2rstxARVk7wtiyAI2gihLIIgqIh20w0JgmDREpZFEAQVkXdQVm5067q09em5Qt5iNMkHr5SKs6odeqy3dvlKeTL7q7wlKMvzr7w10cyKY3HmYw3JPst8Hg8PmNnOi1C0knRYZdGn5wqMuOPcvMVoktPX3DtvEZrl1OE35C1Cs9j0BY3rqx71a+xZSQQpnwM/znw+xaNzq050Q4KgxhEeO1/YytaXekl6VNJrkl6VdEyJOttImippdNpOKXfeDmtZBEFboaAsWsAs4DgzG5UiSp+X9KCZvVZU759mtlulJw3LIghqnJZaFmY23sxGpffT8dndPZs/qjyhLIKgximhLLpJGpnZDm/yWKkPnnvj2RK7N5P0oqT7JJWcwJgluiFBUOOU6IZMNLN+ZY+TujA358u0ot2jgN5mNkPSLnhSqTWbO19YFkFQ47S0GwKQZrPeDtxkZvNNmDOzaWY2I72/F2hMs3ubJJRFENQ4CzAaInwq++tmdmETdVYq5CKRtDGuCyaVqlsguiFBUOOIFv9Qt8BT6r0saXQqO5mU7MfMrgT2AX4saRYeyrG/lZn7EcoiCGqclg6dmtm/mDerW6k6l+G5OComlEUQ1DgLEGexSAhlEQQ1jgQNDZm8yV/NzkWOUBZBUPOI+lAWQRCUQ4L6xoyy+DwfOUJZBEGNI2nebkhOhLIIglpHmteyyIlQFkFQ40jM67PIiVAWQVDrSNTX5x9snb8ErYykMeVi3IOgLeEOzrqvt7wIyyIIahxRGw7O3C0LST+X9Erajk1lB0oakdJ9/VG+yDCSdpY0Ks3BfziVLS9peEofdg1lwlyDoM2Rhk4LW17kqiwkbYiv27gJsClwmKTN8LUptzCz9YHZwAGSuuNrQ+5tZusB+6bTnAr8K63QfQfNrIwt6fBCwpAJn0xdVJcVBK2K5EFZhS0v8u6GbAncYWafAkgaBmwEbAg8l2bQLg58jCuTJ8zsHQAz+ySd43vAXqnsHkmTm/oyM7sKuAqgX981YnWloG0gUdeY9081f2VRCgHXm9lJ8xRKA3OSJwhyxR2c+f9U8/ZZ/BMYJGkJSUsCewIj8WXjVwCQ1FVSb+AZ4HuSVi2Up3M8AXw/lQ0AlqvyNQTBoiVZFoUtL3JVVylV+Z+BEanoGjN7UtKvgeGS6oCvgKPM7JmUmHRYKv8Y2BE4DbhF0qvAU8C7Vb+QIFiEKLohTkr7dWFR2V+Bv5aoex9wX1HZJKD/opQxCHIllEUQBJUw36zTnAhlEQS1TlgWQRBUQvgsgiCoDKkmhk7zlyAIgmYJyyIIgsoQ1IWDMwiCsghUn//8yFAWQVDjSEINeQdbh7IIgjZBWBZBEJRHhGURBEEFSGFZBEFQAWFZBEFQCQLqGsKyCIKgHDEaEgRBRQgU64YEQVAWgRr09Va2utRL0qOSXktZ748pUUeSLpH0X0kvSdqg3Hk7rGXx2exOvDC1d95iNMnAkSPzFqF56vIPP26Oup5b5S1CqyGEWpbVexZwXMpEtxTwvKQHzey1TJ0BwJpp2wS4Ir02SVgWQVDrSNDQMHcrg5mNN7NR6f104HWgZ1G1PYAbzHkGWFbSys2dN5RFENQ6EjQ2zN1adKj6AN8Fni3a1RMYl/n8HvMrlHnosN2QIGgziGKLopukbD/1qrQmzryHSV2A24FjzWzawooRyiIIap1CN2QuE82sX/OHqBFXFDeZ2bASVd4HemU+r5LKmiS6IUFQ60ioseHrrXx1CbgWeD1lzy/FncAP0qjIpsBUMxvf3HnDsgiCWmd+y6IcWwBDgZcljU5lJ5PWATazK4F7gV2A/wKf4WsON0soiyCodVqoLMzsX7ino7k6BhzVEjFCWQRBrSNaPAqyKMhfgiAIytDibsgiIX8JgiBoHgnq84+YDWURBLWOCGURBEElhGURBEElCKjLPyQqlEUQ1DyqiVm+oSyCoNYRUAPJb0JZBEHNE5ZFEASVEj6LIAjKItVENyR/CVoZSX0kvZK3HEHQqtTVz91yIiyLIKh1pJrohpSVIP1Tvy7p6pQpeLikxSWtL+mZlBn4DknLpfqPSTpH0ghJb0pqMnOqpM6SrpP0sqQXJG2byuslnSfpuXT+IzLHnJjqvyjp7FS2Yfr8Ii2cSRcEbYL6+rlbTlSqrtYELjezdYEpwN7ADcCJZvYd4GXg1Ez9BjPbGDi2qLyYo/DZsn2BIcD1kjoDP8KTcWwEbAQcJmlVSQPwRKObmNl6wLnpPNcBR6eyJpF0uKSRkkZOnjy5wksPgpyRoK5h7pYTlSqLd8xsdHr/PLA6sKyZPZ7Krge+l6k/LFO3TzPn3RL4C4CZ/RsYC6wF9Mez+IzGE40ujyusHYDrzOyzdMwnkpZNsjyRznljU19mZleZWT8z67fccsuVueQgqBVqQ1lU+s1fZN7PBpatsP7sFnxHFuGWwgPzFEo7LcC5gqCNI1D+7sUF9ZpMBSZn/BFDgcebqd8U/wQOAJC0Fp726w3gAeDHKekoktaStCTwIHCIpCVSeVczmwJMkbRlOucBC3ZJQVCjSG1+NOQg4Mr0w32bCnL4leAPwBWSXsZXUTrYzL6QdA3efRmVko9OAAaZ2f2S1gdGSvoSzyN4cvruP0kyYPhCXFMQ1CY5dj8KlJXAzMYA3858Pj+ze9MS9bfJvJ9IMz4LM5tJCSVjZnNwJXByiX1nA2cXlT0PZJ2bJzT1nUHQ5pBQhHsHQVCe2vBZVEWC5Jg8p6j4HTPbsxrfHwRtG7WNbkhrkEY1HihbMQiC+REdR1kEQbAwdCDLIgiChSGURRAElSCBYjQkCIJKCMsiCILyhGURBEElKHJwBkFQKR0lKCsIgoVBKLohQRCURTF0GgRBpYRlEQRBecLBGQRBRdTGrFOZWd4y5IKkCXjOz9aiGzCxFc/X2oR8C09ry9jbzLqXqyTp/vTdBSaa2c6tKEdFdFhl0dpIGmlm/fKWoylCvoWnLci4KMl/5ZIgCNoEoSyCIKiIUBatx1V5C1CGkG/haQsyLjLCZxEEQUWEZREEQUWEsgiCoCJCWQRBUBGhLIJFTlpVrsnPtYCkTnnLUOuEsihDLT7YxRRklFRz91OSLHnRJW0AYDXmVZfUF/iRpJ55y1LL1NzDVUsUPei7ZRaCrhkKMkraHV83tqb+ITPtdxRwjaQeOYtUih7ADsAuNSpfTRDKohkyD/rPgd8AH2b318I/eVIUuwCnAX8zsy9rzRqSNAhf03ZXM/tAUp98JXIK7ZQWwfojsDWweyiM0uT+sNc6kvoB+wCbAW9L2lzSUPh6AedcSQ/8tvgi0q8kC+MvkvpLWiwPxZHpFim9Xwa4GVhP0inAI5JukbR0tWXLypjtDpnZcOAS4HuEwihJ/vNea4zihwj4AJgA/AmYBqwCrCSpm5ldlLeMybL4BDgcWB5fJvJTYH/gsWr7B4rarzFZOk/i7bcpcBOwCXANsD7wRDXlK5CxGo8E1gE+A64GLgb+B5gj6V4zey8P+WqRUBYZinwU3wW+ACYDZwEHA9eZ2QuSDgUWz1NGSTvjD7kB5wJbAh+Y2X8kfRP4M7AyrTsNvyyZ9jsC2ErSC8BdwDYFSyzJ3gt4u5qyFZP8KHsCJwEXAfVmdrykJYFjgVmSrjez2TmKWTuYWWxFG3A88C/gceBSYFBm3w+BF4B1cpSvf5JhY2AScEZm3+7Aq8DuOcr349R2W6TXvwN7ZtpvFNC3Bu7zKcASwE+B+4BOwGJp32ZAj7xlrKUtLAvmsyjWwv9tvgd0BzYH+kv6GJiK+y+GmtlrVZRvRWBxMxuTfAB74JbOSsAbuHOuQE/gGDN7qESXalHJ1wuYDswAlgZWBAYCBwGzgYeBH0iaCtwOPGxmVbV4mmiLlYCRwOtmNiDVO1LSZ2Z2QzXlawt0eAenpC4ZRbEs/tAvCXQys/HAk7iDrpeZvQrsZ2avVFG+xXBroZOkzknWScARwAnAwWY2TtKBkvYxsyvM7CGoTjyDpJ2A64HBeBt9gltjPYCBZrYdcCfu6xkKfJmnopC0p6RdJG0EnI235ci07xDgGOCZasrXVujQykJSI3CopEHJD3FtUhBPA7+UtIyZfQi8BawOYGYzqimjmX2BjyR8Alwg6RvAP3Fz/mwzezON2JyEP/hVQ9KuwPnAb4HbzeydtGsq7ksppILbELeATjCzz6spI8w3BP5TYG1coX0HOA7YS9KtuJN4bzN7s9oytgU6dDfEzL6SdA/+zzIFKKRMuwk39R+Q9HfgQGCnasomaXH8n/pN/Ee3Dj4a83PgVOAwXHmMAtYFTjKzR6soX1fcsjnazJ7IlB8FzDKzP0p6KY2EdAUGm9mEasmXZCk4g4VbOluY2baSTgc+Bu5J+zfFHdYNZjalmjK2JTp8PgtJKwA/w83o35rZDSnYqhOwL/4QPW5mb1RZrr7AbsBywAbAEHx0Y2/8x/droEuSr9HMXq+WjyLJtxJwG7Bb4Qcm6XxgL9xZ+G8zu1TSmsBkM6tqMl5JS5nZ9PR+ZTzR7v/hQ+G98e7kTElDgGfNLNeRmbZAh7YsJG2NjyhciI+xP5C6HpdK2hF41Ko8zi5pNfxhfhIfVTgIOC/9K0+Q1IA7D88Hfp/8KEB151yY2YeSxgLfBJ5NxfcCv8JHEvZLbfmfaslUQNIywEGSpgON+EjMAElvA4OAHZKi+CHeLal6puy2SIdSFiX+eRuBb+GhyJfjoyDDJH0Hf4C2q76U9AY+B2YBV+IBVl0l7W9m/2dmo1IXZRvcL5ALyfqaAhws6Q0zm2Jmj6R9q+BWUB7Ro7viwV/DgIeAmbhlBt69/BL4h6ThwABg/+SXCsqR99htHhuwVfY9cAXwS/zh7gXsB6xWZZnWIMUe4N2M10nxHbjj7Vpcga2ND5uukGP7FbqvS+ERo1cA2wMr4I7X54G1c5BrN+BFvPvYgDteXweOLarXH9ix2ve4rW+5C1CVi4QVM++XAv4KXJEp2zY9ZOcAPXOS8XBgDrB++rwfHng1MH0+FP+3nADsWANtWp9pz/Pxf+2HgAfJIeAKj5l4FNioqLwfHil6dPq8D/DtvNuvLW7tvhsiaW3gNUkXA6+a2TWSzsTzF1wK/NTMHpX0LO5M/KzK8vUBppvZVckf8Yik7c3sVklfAmdJmpPkvge3KF6sonwbA8uY2YNFc1JmS2o0s+mSjjczS3EqX5pZVdsw8QXwFTAzddNOxP8EPgLeA36VnMY741ZF0ELavbLAowqfwqeXD5a0OT5X4Q58OPROSXfhQ5MHmtnkKsu3H/CYpKlm9ocU+/FwUhh/l2TAZclZeDMwvlqCSdoD+B1wgqROZvZlKu9nZiPN7CuY61i1fIcdp+BdovPxoeSHgBvxbshuuOXzPnCWmY3JR8S2TbtXFmb2nqQRuJNrAP7jPAB3wP0cWBVXFEfm8RCZ2bmSugHPSdrVzC72sAAelrSdmf0jOROrPfTYCR9OPsZS/EaSYzXgZEm/AMaY2ZxqDtk2RbJs/oj/MfQC/mEe0Iakw4BRZnZ3njK2ddp1BGcKxgF3XhYiCj/AIwpfxeMrPsQnYlUzhLtLij9A0mZ4dOazwK2SVjKzi/FJTs9J2sDM7jCzf2aupxoYHsfRT1JfSV3weSd1eDTmLLzbRt6KooCZzTCzp83s1oyi2Bfoi09eCxaCdh+UlX5gjXimq9VwRfHLZOJ/E/i4ml2PTDThn/FRgz3wEOPXkg9lY2AP8ziGnwGvmNmD1ZKvSNZ18Ulqa+ExFH1x5bol8A4+/f3gHLpuZUmBWIPxSNfB1fwzaLfk7WGt1oYHD30I/CZHGVYChqT3R+BOuV8X1bkEt3pWzpSpijLWpdfCaMdyeNDa6sBSqex3+ISr5fO+r81cx+LArsAaecvSXrZ23Q3JYh6u/UugXtISOYnRD/i+PC3fOHy49KBkKgNgZj/F8z+snimrxuzRVdPoxhxJdeajHXX4cG4jPumqizxt3474xLGqTlxrCWb2uZndY2b/zVuW9kK7d3AW8Qw+dyEXzOzuNNqxBx5Kfr2kD/Gs3NNwP8D3gUOroSAKZCaFfSTpTPMJdnXmma2mJgfxD/BgsK7A4Rbp5joc7d5nUYykJayKcQDytSh6m9lTmbK9caU1PCmM3fGRmQbgYjP7WxXlW9XM3pE0EI/C/Ag4PymMBjObler1wOMYsCrPHg1qgw6nLKpJcmYOxZ1sv7J5p3LviVsRF5rZ08khh5mNr9ZQpKTl8DwYp+D+k23wUOlxFCmMWhgeDfIllMUiRtLy+AS1Qfjs0ccz+07GM13vZTkkhU2xFMJHiLY1szMlbYeHRGcVRiiKoOM4OPMiOQGH4anlfiGfFl/gKXz4sarrj0haJSmxFc3jERYDNpZ0rPnM0dvwoLXfJKdnKIqgwzk4c8HMPpF0G64UTpV0LR4cdgFwSpWdmXvgo0IfAStLuhO4DDgPOCZZERclR+yOeALemh31CKpHdEMWEckhOA34tKAMktm/E3A0Pk/h9jRCUi0fxbZ4kNUQPK/oisANwP342iPfxZPBjDazs6rtDA5qm7AsFgHJWXkecLyZzSgMQ5pPxLpL0v3AbKv+vIrNgUvM7Hl5pvA3JO2HT6r73MzOTgrtB5K6mmfqDgIgfBaLBPMM4V/ikY5Y0ZqoZvZVoaxKFkVhTskqzM24/YWkevO0/IcAA1K8xVPAj0NRBMWEsmgFUqQjklYqTBDD/QIz5AsEZX+wVSejkG4DtpC0YSqz5JuYgPslvjSzmZZDuv6g9oluyEKQwsZnmS/+uyHui5gj6V3gD3h+z/7AjTUyovAMngh4cOr+jMTl3RKfA9KYq3RBTRMOzoUgxSTsi6eS6w9ch09WuxxfCGgInjB2sFV5Fa6mSBGlh+LJiJ/Gu0v74BPcqpaBK2h7hLJYANIPbnxyUN6LRz7uZWb3p/11QB981uOe+EzXJ3MSdz7kaef64SMzE4H7rMrrogRtj1AWC4A8n+e1wCv4Yj/r4YFNB5jZ1KK6h+M/ysGFeRZB0BYJB+cCYGbH4DEU1+Prje6Nh0f/DXyhIEmDU/UJeGBTfR6yBkFrEcqiBRRGNOQrr4/BhyL/krodRwHvSnoJD+0uzMycieex/CIHkYOg1YhuSIUUgqfkK14NwFcE/0zS3fgKYvul/XsD48xsRPa4HEUPglYhlEULSEOMVwGHZR2W8pXWOwMDMqHdoSSCdkV0Q5pBUi/5OiMFtgFuMbMnJdWngCbMbBCeGKawpmZVIjODoJpEUFYTJD/EesA4SUub2TR8mHHVQpWU62FT4CMzG5iXrEFQDcKyaII08etu4L/AzZJ2BIYDO0naC1hJ0gZ4IFbXHEUNgqoQPosSZJyZ2+OrW9XhwVW/AjoBp+JrovYEzjWzO3MTNgiqRHRDSpAUxQbA6cCRwH/wFbrOwXNpDkz5K5cxszHhzAw6AqEsEtkfvKTVcCUx1sxeTmX/wDNdXSjpPDO7B5gM4cwMOgbhswAkdQY2S+/XANbHVyvvLmkX8NR4wN141OZH+UgaBPkRPgu+nhg2EM852RfPKDUb+AmwDPCgpfVGs2tpBEFHIiwLwMzex+Mk9gSeNbOJ5ov93oivcD4wY2GEogg6JB1aWWTmenwLnwQ2FHhD0tmSVjKzd/HVwyfhCW6DoMPS4bshknbGQ7h3N7PRaV2P3fAJYKPwqMwrk/URBB2Wjm5ZfAM4G89DMRogrRh2V6pyHvBcKIog6KCWRSboqjdwgZntk8o7m9nMtArXV6kr8mHEUQRBB7MsMhm2l0yvHwA9JB0HkBTFjsBFaW7IR6k8FEXQ4ekwQVkZa2In4CeSngPew1fgOi0FYj2Kp8k7tXitjyDo6HSoboikrfAU/YcC/4PnzTwE6A6cjGfmftrM7ouuRxDMS7tWFinYqjvwUsrEvS8eov0pcCmwt5mNldTdzCZkjgtFEQRFtHefxSDgEnzBX/CZon8GrgD6J0WxE3C0pIIfI3wUQVCCdqksUnbt/c3scjwHxW8l9QMex5fwezHV2wq4ABhhZp/mJnAQtAHanbKQ9E1gWOGzmZ2BL9l3KrA2PhFsDHA/7sw82czuznMt0iBoC7Qrn4WkdXAH5o1mdm3KkdnXzEZJOhVPk3emmT0vqQuAmc0IH0UQlKfdWBZJMdwJTE+Koh63HrYGMLPT8PDt8yRtZGYzzGxG2heKIgjK0G7iLFLE5RDgHklH4dPMR5vZRZk6Z0iamZuQQdCGaVfdEIDkyHwQ+LeZbZYp3xRY38yuzE24IGjDtJtuSAEzG4mv77G2pMMA0tofV+OZuoMgWADanWVRIFkY9+J5KvoC56S8mUEQLADtVlkASNoIeAQYamZ/z1mcIGjTtGtlAV+veB7Do0GwkLQ7n0UJIjIzCFqBdm9ZBEHQOnQEyyIIglYglEUQBBURyiIIgooIZREEQUWEsgiCoCL+Hw9g4juxZJWAAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATUAAADDCAYAAADjo4a0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAjMklEQVR4nO2defwd0/nH35/vN4ktlpBYEhGtpUrtsVPUGoJYQ1G0KFWl2lqLKtqoffvZq3SxlFC1U1vFmsS+tkiEBAlZxBZJnt8fz7k1ue53S25m7vfe5/16zeveOXNm5pkzM8885znnPEdmRhAEQb3QVLQAQRAE1SSUWhAEdUUotSAI6opQakEQ1BWh1IIgqCtCqQVBUFeEUguCKiFpWUkmqUvRsjQynVKpSZqaWWZK+iyzvnfR8s0OkkZJ2rJoOYKghKSHJB1YtBwdpVN+Ucyse+m/pFHAgWZ2f3EStY6kLmY2vbOfoyMUKU+tlUW16QzXJ0mAzGxm7ic3s069AKOALdP/JuBY4A3gQ+BGYNG0bVnAgAOAMcBE4BBgHeB5YBJwUea4+wPDgIuAycCrwBaZ7QsDVwHjgHeB04Dmsn3PTXKcBiwHPJDWJwB/BRZJ+f8MzAQ+A6YCRwObAe+0cq2/AW4C/gJMAQ5sTaYK5bYuMDzt+z5wTmbbxsBjqUzGAPtnrvlaYDwwGvg10NTKNc8DnAW8nc5xKTBfC/JUtbwrHH8e4DxgbFrOA+bJbB8IPJuu+TFgtcy2vsDQdN0fkp4ToDld3wTgTeAw/Bnr0sqzehzwMv78XQ3M204ZRgHH4M/qF+XnAJSu/4N0T18AvpO59hbvA7BTOu8U/N3ZFjgdmAF8jj+TpWveEHg63aOngQ0zx3ko7TcMf5aXL0QnFK2U5vgCZn3RjwCeAJZON/Iy4Lq0bdn0wF0KzAtsnW7YrcDiQJ/0QGyaeVGmAz8HugKD040sKclb0vEXSPs/Bfy4bN/DcWt4PmB5YKskVy/gEeC8SteR1jejbaX2JTAIV+bztSZThXJ7HNg3/e8OrJ/+9wM+BvZK170YsEbadi3wD2DBVJ6vAz9q5ZrPBW4DFk37/BP4fQvyVLW8Kxz/t/izsXgq/8eAU9O2NdO9Xw9XVPulsp4nrT+XrmUB/NnZOO13CK58+6ZrfJC2ldqLmfzDSAq4NRky+z6b9q10fdsAI4BFcAX3bWCptK3F+4B/3Cbjz2YT/h6slFFSB2bOsSiujPdN5bxXWl8sk/9tYJW0vWshOqFopTTHFzDri/4Ks37dl8Jf/C58pdT6ZLZ/CAzOrN8MHJl5UcbiJnRp+1Pphi6Bfy2zX7u9gAcz+77dhtyDgGcqXUda34y2ldojmW2tylTh/I8ApwA9y9KPA26pkL8ZmAasnEn7MfBQpWtOL9YnwHKZtA2At1qQZ26X9xvAdpn1bYBR6f8lJAWX2f4asGmSeTwVFBVueR+SWd+atpVaNv92wBttyZDZ94etXN/38I/M+iTruT33Af9QnNvCMR9iVqW2L/BUWZ7H+cqSfwj4bWv3IY+lU/rUWqEfcIukbD1+Bv5SlHg/8/+zCuvdM+vvWrpbidFA73SersA4dx0A/pUbk8mb/Y+kJYDzgU3wr2UT/pWbE7LnaI9MWX6EWy+vSnoLOMXMbsctgTcq5O+Zjj86kzYa/7JXkqcXMD8wIiOPcOXYElUr7wr0riB77/S/H7CfpMMz27ul7TOA0VbZh9W77LyjK+Qppzx/e2SotO8smNkDki4CLgb6SRoK/BK3LFu7D32BO9shN3y9DEvX0NIzUAidsvWzFcYAA8xskcwyr5m9O5vH66PMkwAsg1sTY3DLoWfmPAuZ2SqZvNmXE+B3KW1VM1sI2Ad/uFrK/wn+MAIgqRlXFFmy+7RHpq92NPuPme2FV8fOAG6StEA6znIVdpmAW739MmnL4P6tSvJMwD8Sq2TkWdgyjTwVqGZ5lzO2guxj0/8xwOllz838ZnZd2rZMC900xuFKIXvMtijP3x4ZSrR6jWZ2gZmtDawMrAj8irbvQ0v3u9L5ysuwdA0tPQOFUG9K7VLgdEn9ACT1krTTHBxvceBnkrpK2h33U9xpZuOAe4GzJS0kqUnScpI2beVYC+IO18mS+uAPXJb3gW9m1l8H5pW0vaSuuFN+npYO3lGZJO0jqZd569SklDwTb8DYUtIekrpIWkzSGmY2A294OV3SgqmMj8IbKirJMxO4AjhX0uLpnH0kbdPSNVDd8i7nOuDX6ZnoCZyUkf0K4BBJ68lZIJX7gngVeBwwJKXPK2mjtN+NSd6lJfXAG6na4rCUf1HgBOCGdsjQJpLWSft2xT+InwMz23EfrgIOkLRFKtc+klZK28qfyTuBFSV9Pz0bg3EFent7ZMyLelNq5+MO0XslfYw7htebg+M9CayAf+1OB3Yzsw/Tth/g1YNSS9ZNuA+vJU4B1sKdsnfgrWlZfo+/dJMk/dLMJgM/Aa7Ev4SfAO+0IW9HZNoWeEnSVLzc9jSzz8zsbdzX8wvgI9w5vXra5/Akx5vAo8DfgD+2Is8xwH+BJyRNAe4HvtVK/mqWdzmn4a29z+MtgyNTGmY2HDgIb3mdmGTeP22bAeyAN/S8jd+DwemYVwD34A0JI/n6Pa3E33AF/SZezW9ThnayUJJnIl4l/BA4M21r8T6Y2VN4j4Bz8WfzYb6yxs4HdpM0UdIF6V4MxJ+ND/FW+oFmNqEDcs51NKsLIyghaX/cSbpx0bI0Ao1Q3p2hT2U9UG+WWhAEDU4otSAI6oqofgZBUFeEpRYEQV1Rb51v203PnovZssv0bTtjQYx95rmiRWiV3quvXLQInZ9PJxUtQauM+M/YCWZW3jeyRZaX7NOytHFwj5ltW2XRWqVhldqyy/Rl+LD7ihajRX4z/+JFi9AqJz9wY9EitEHtu1VsxK1Fi9AqzVuf2J4REv/jM+DQsrSTfCRKrkT1MwiCqiB8LFt2aTW/1FfSg5JelvSSpCMq5NlM0mRJz6blpLbkaFhLLQiC6lJSah1gOvALMxuZRk6MkHSfmb1clu/fZjawvQcNSy0IgqrQUUvNzMaZ2cj0/2M8yk6f1vdqm1BqQRBUhRaUWk9JwzPLwRX3lZbFY8o9WWHzBpKek3SXpIoBGrJE9TMIgqrQQvVzgpn1b3U/qTtfxTKcUrZ5JNDPzKZK2g4P6rpCa8cLSy0IgqrQ0eonQIoqcjPwVzP7WkAAM5tiZlPT/zuBrinKSouEUguCoCrMRuun8NBHr5jZOS3kWbIUY0/SurjO+rBS3hJR/QyCoCqIDiuUjfAQ4S9IejalHU8KtmlmlwK7AYdKmo53hdvT2hjbGUotCIKq0NEuHWb2KLNGf66U5yI8xly7CaUWBEFVmI1+anOFUGpBEFQFCbp0KZtX58sZucsRSi0IgiohmkOpBUFQL0jQ3LVMqX2Wvxyh1IIgqAqSvl79LIBQakEQVAfp65ZaAYRSC4KgKkh83adWAKHUgiCoDhLNzcUPUipegiojaVRbY8OCIKg+3lDQNMtSBGGpBUFQFURtNBQUbqlJOkrSi2k5MqXtI+mpFL73MknNKX1bSSNTbKV/pbTFJN2bwgFfSRvDLoIgmEukLh3ZpQgKVWqS1gYOANYD1gcOkrQBMBjYyMzWAGYAe0vqBVwB7GpmqwO7p8OcDDxqZqsAt5AGw7ZwvoNLwerGT2h1oH8QBB1E8s632aUIiq5+bgzcYmafAEgaCqwDrA08nSKOzAd8gCu9R8zsLQAz+ygd47vALintDkkTWzqZmV0OXA7Qf601an+6oSDoTEg0dS1apRSv1Coh4BozO26WRGmHguQJgqAdeENB8SqlaJ/av4FBkuaXtACwMzAc2E3S4gCSFpXUD3gC+K6kb5TS0zEeAb6f0gYAPXK+hiAI4H+WWnYpgkLVapoa60/AUynpSjMbJunXwL2SmoAvgcPM7Ik0acPQlP4BsBVwCnCdpJeAx4C3c7+QIAhQVD+dFMb3nLK0G4AbKuS9C7irLO1DYOu5KWMQBO0glFoQBPVExSgdBRBKLQiC6hCWWhAE9UT41IIgqC+kmujSUbwEQRDUBWGpBUFQXwiaoqEgCIK6QaDm4uNJhFILgqAqSEJdih6kFEotCIIqEpZaEAT1gwhLLQiCOkIKSy0IgjoiLLUgCOoJAU1dwlILgqBeiNbPIAjqCoFqYN7PUGpBEFQHgaL6WRyffj6NES/XbpDcHYYPL1qE1pn2cdEStIoWWaFoEdpk5KIDihahDU7sUG4h1IEZpCT1Ba4FlgAMuNzMzi/LI+B8YDvgU2B/MxvZ2nEbVqkFQVBlJOjSIZUyHfhFCuu/IDBC0n1m9nImzwBghbSsB1ySfluk+ApwEAT1gQRdu8y6tIKZjStZXWb2MfAK0Kcs207AteY8ASwiaanWjhuWWhAE1UFUstR6Ssr6Ui5P8+/Ouqu0LLAm8GTZpj7AmMz6OyltXEtihFILgqA6VK5+TjCz/q3vpu7AzcCRZjZlTsUIpRYEQXWQUAeDRErqiiu0v5rZ0ApZ3gX6ZtaXTmktEj61IAiqQ8lSyy6tZpeAq4BX0lSZlbgN+IGc9YHJZtZi1RPCUguCoFp0vPVzI2Bf4AVJz6a044FlAMzsUuBOvDvHf/EuHQe0ddBQakEQVAfRZotnFjN7NO3VWh4DDuuIGKHUgiCoEh221OYKxUsQBEF9IEFzTLwSBEG9IEKpBUFQT4SlFgRBPSGgqfheYqHUgiCoEoKmsNSCIKgXBESQyCAI6oew1IIgqDfCpxYEQd0g1UT1s3gJqoykZSW9WLQcQdCQNDXPuhRAWGpBEFQHqSaqn21KkCyfVyRdIeklSfdKmk/SGpKekPS8pFsk9Uj5H5J0hqSnJL0uaZNWjj2vpKslvSDpGUmbp/RmSWdKejod/8eZfY5J+Z+TNCSlrZ3Wn6ODg1+DIKgizc2zLgXQXrW6AnCxma0CTAJ2xWeBOcbMVgNeAE7O5O9iZusCR5all3MYPhB/VWAv4BpJ8wI/wuMmrQOsAxwk6RuSBuAxy9czs9WBP6TjXA0cntJaRNLBkoZLGj5x4sR2XnoQBO1CgqYusy4F0F6l9paZPZv+jwCWAxYxs4dT2jXAdzP5h2byLtvKcTcG/gJgZq8Co4EVga3xwHDP4jHLF8MV65bA1Wb2adrnI0mLJFkeScf8c0snM7PLzay/mfXv0aNHG5ccBEHHqA2l1t6zfpH5PwNYpJ35Z3TgHFmEW173zJIobTMbxwqCIBcEKt5NP7tevcnAxIy/bF/g4Vbyt8S/gb0BJK2IR7x8DbgHODTFL0fSipIWAO4DDpA0f0pf1MwmAZMkbZyOuffsXVIQBHOE1OlbP/cDLk0K5k3aEWa3Av8HXCLpBXxi0/3N7AtJV+LV1pEpjvl4YJCZ3S1pDWC4pGl4qN/j07n/KMmAe+fgmoIgmBMKqnJmaVMCMxsFfCezflZm8/oV8m+W+T+BVnxqZvY5FZShmc3EldXxFbYNAYaUpY0Aso0ER7d0ziAI5hISimFSQRDUD7XhU8tFguTgP6Ms+S0z2zmP8wdBkAfqHNXPapBaMe9pM2MQBJ0X0ThKLQiCRqCBLLUgCBqBUGpBENQTEihaP4MgqCfCUguCoH4ISy0IgnpCMUdBEAT1RqN0vg2CoBEQiupnEAR1g6JLRxAE9UZYakEQ1A/RUBAEQV1RG1E6ZGZFy1AIksbjcyJUi57AhCoer9qEfHNOrctYbfn6mVmv9maWdHeSIcsEM9u2ijK1LUejKrVqI2m4mfUvWo6WCPnmnFqXsdbly4viZx4NgiCoIqHUgiCoK0KpVY/LixagDUK+OafWZax1+XIhfGpBENQVYakFQVBXhFILgqCuCKUWBEFdEUotmOtIUmvrtYCkbkXLEFSHUGptUIsvYDklGSXV3P2UJEutUZLWArAaa52StCrwI0l9ipalEp3hGawlau4lqCXKXsiBkjYpWqZySjJK2hG4pNYsjkz5HQZcKal3wSJVojewJbBdrclX9gyuL2n+omWqdUKptULmYToKOBF4L7u9FiyjpNC2A04B/m5m02rtyy5pEHAAsL2ZjZW0bLESOaVySpNtXwZsCuxYS4ot8wwejvdD61GsRLVP4S9lrSOpP7AbsAHwpqQNJe0LYGYzCxWO/72YmwPHAy8mi+0vkraWNE8RCi5THVb6vzDwN2B1SScBD0i6TtJCecuWlTFbDTaze4ELgO9SY4pN0vb4R2FzM3tX0rcl9S1arlql+DghNUb5ww6MBcYDfwSmAEsDS0rqaWbnFi1jstQ+Ag4GFgPuAT4B9gQeytt/VVZ+XZPlOAwvv/WBvwLrAVcCawCP5ClfiYwFdAiwMvApcAVwPvBTYKakO83snbxlq/AMTgGGAj+UtCCwB/CEpIvMbHje8tU6odQylPkv1gS+ACYCvwP2B642s2ckHQjMV6SMkrbFX0YD/gBsDIw1s/9I+hbwJ2ApqhteqU0y5fdjYBNJzwD/BDYrWbZJ9r7Am3nKVk7y8+0MHAecCzSb2a8kLQAcCUyXdI2ZzchRpuwz2BuYAbwGbI/f78uAS4GTcF9gUI6ZxVK2AL8CHgUeBi4EBmW2/RB4Bli5QPm2TjKsC3wInJbZtiPwErBjgfIdmspuo/R7K7BzpvxGAqvWwH0+CZgf+BlwF9ANmCdt2wDoXaBsvwTuAB4DjgJ6ZLbtBDwNLFd0GdbiEpYaX/s6roh/vb8L9AI2BLaW9AEwGfev7WtmL+co3xLAfGY2KvmodsItxyXxr/hlmex9gCPM7P4K1Zi5JV9f4GNgKrAQsASwA7Afbmn8C/iBpMnAzcC/zCxXC7KFslgSGA68YmYDUr5DJH1qZtfmKV+W5BfdwswGSPoj3oBxbtq2M67kfmhmbxQlYy3T8A0FkrpnFNoi+Mu5ANDNzMYBw3BHd18zewnYw8xezFG+eXDrq5ukeZOsHwI/Bo4G9jezMZL2kbSbmV1iZvdDPv3BJG0DXAMMxsvoI9y67Q3sYGbfA27DfZH7AtOKVGiSdpa0naR1gCF4WQ5P2w4AjgCeyFm+70g6NpP0JXC1pF/jH6ndzMwkrQDcndZfyFPGzkRDKzVJXYEDJQ1KfrKrkiJ7HDhW0sJm9h7wBrAcgJlNzVNGM/sCbzn8CDhb0jLAv/Fq3BAzez210B6Hv6C5kVrlzgJ+A9xsZm+lTZNxX18ptPPauEV5tJl9lqeM8LWuOT8DVsIV72rAL4BdJN2IN7bsamav5yVbsrw/A66StGZ6Jj8DjsHLbYCZfSnpp0lmzOz9vOTrjDR09TM9LHfgX+pJQCkU8l/xKt49km4F9gG2yVM2SfPhls/ruHJYGW8FOwo4GTgIV3IjgVWA48zswRzlWxS3FA83s0cy6YcB083sMknPp5bPRYHBZjY+L/mSLKVGFeGW40Zmtrmk3wIfAHek7evjDT9dzGxSjvLNkz5ab0haDDgM+NzMfirpHuDbuMLth1fl9yrio9DZaPh4apIWB36OV59+Y2bXyjvVdgN2xx/2h83stZzlWhUYiHe2XAvYC2/N3BVXEr8Guif5uprZK3n50JJ8SwI3AQNLikDSWcAuuNP9VTO7MFWZJppZrhOWSFrQzD5O/5fCJyS5Hu+i0w93I3wuaS/gSTPLtSU29dEbCDyI399FgeeBnwCTzOwYSYfi1fYewAVm9mqeMnZWGtpSk7Qp3oJ4Dt5H6Z5U5bxQ0lbAg5ZzPyVJ38RfumF4K+J+wJnJyhkvqQvuhD8LOC/5+YB8x1Sa2XuSRgPfAp5MyXcCJ+Ath3uksvxPXjKVkLQwsJ+kj4GueMvrAElvAoOALZNC+yFeHc13tiOpm5lNkWTAQ3hVfRUzmyHpIuAISUOAE1JaFzObnqeMnZmGUmoVLJmuuIl/AHAx3uo5VNJq+IP+vfylpB/uU5mO90f6BFhU0p5mdr2ZjUxV083wl6EQkjU7Cdhf0mtmNsnMHkjblsatyiJGM2yPd/IdCtwPfI5bQuBuhWnAPyTdCwwA9kx+0zxkE/4ROCfJORZvLX4RWAZ4C3gF/8geg3+4fg4UPnKlU5FX35FaWoBNsv+BS4Bj8ZewL95j+5s5y7Q8qe8WXhV5hdQ/DndgX4Ur2pXw7hyLF1h+JbfFgvgIhkuALYDF8QaMEcBKBcg1EHgOdxt0wRswXgGOLMu3NbBVAfe4VG69UnktgveTOwTvoNw/bV8VbyQo7B535qVwAXK5SFgi839B4Abgkkza5ullOAPoU5CMB+Nf5DXS+h54B9sd0vqBuPUxHtiqBsq0OVOeZ+FW0P3AfRTQsRbvc/YgsE5Zen985MLhaX034DsFyLdaKpv50/qlwPulZxPv8H0X8Hvg78BiRd/jzroULsBcv0C3bGbinRcPTGmr4WP8Lsx8PS9PS4+c5Vu29ADjTuKPgDXT+iDgBTy6BXiVbvWc5Vu3pERLZZXZ1jWbXrI8CrrPPYB7k5UzH26lPQzciI8vfS/d37eBb+UsW1P6/WdauqX1IfgwtsXT+n7AP3D/Wu5lWC9L3bd+Jv/O9fjDtCUwJv2fiHfT+E5a/wGwj5mNylm+o3Fn8Ugzmy7pCLzLxhbm40x3As7DncZ/y1m2nYBT8a4bD5jZtJTe32psIHXyVx2FVy1Xwa3GR/Hq50BgFPAu8GKe91geGHNLM/tDWr8ODzww0Hyw/5l4i/F3zSNwdCuVczCbFK1V81hwx+sNuJ/l+3hXhGF4tIjrcaWRe5UkI19PvKrZO60fgVtsa6T1ncn4AXOSqRve6XfzTFoT7vsbCnyTrywQ5SlbKzJ3J7W8ksZwpvQ/AbsXJNNCuIW9FrBgSrsetypLFtv/4eN1m0tlGsvsL3U9oiB9vcEbAUo93MfiTtiX8Jal9/AB4XkOfeqe+m8haQNcgT0J3ChpSTM7Hx9s/bSktczsFjP7d+Z68sBwJdFf0qqSuuNDdprw0QHTSQELLb2ZRWNmU83scTO70bxTK5J2x6ukI/OURVK31BVjCt7R97fAGZIWMLM98Xt+a+qA+xP84zHDaiBGX2enEaqfwrtunIhbF2sDx5rZrfIQPR+Y2cSc5emNWw8j8JELu5rZy5IuxH1YO5n3A/s5Xl26Ly/5ymRdBR8svyLeB21V/COwMd79YDQ+9jS38msvqcPtYHzkxeCcP1pL4fdxBF4z+BivKVwKjAOON7NP0miWz81s1zw7Ttc7da/USiQF9jBwsZmdWpAMS+Jf5Ovk8cYuAE41s9MyeS7Am/u3NB+H2lKEibklY5OZzZTUbN7xswf+QbgY/wB8LOlUvIf+X8ws1/Gm7SX15fse8JqZ/TfH866At7CugFeFp+FK9dVUllfi/r2TzWyqpD5m9m5e8jUCdV39zGI+zOlYoFnFTV7RH/i+PBz4GLwbx36pigSAmf0Mjz+2XCYtj2gb35DUNSm0pqTQmvCW4654i3F3eVicrfAB7DWp0ADM7DMzuyNPhZboiTcEjATewa3ZaWnY1kTcclwFOCl9rEKhVZmGGlGAh5TZpaiTm9nt8igMO+FDsK6R9B4+C9QU3E/1fbzrSW4mtL4anP6+pNPNB/o3Jf/OZElP4a3D++Mdgw+2AsJcdwbM7PHk+hyAB3lcD4+cfDYe2HEhvHPwglHdnDs0TPWzhKT5zezTHM/XB+hnZo9l0nbFleu9SbHtiHdH6AKcb2Z/z1G+b5jZW5J2wKu97wNnJcX2vzGH8tDSXwJYztE2ah1JGwLLmNn1ZWkD8M7Sa+Ax+d7AR1ysYhE+aK7RaJYaOSs04YriIEknWArRY2Y3S5qJV0VfN7PbJD2dto3Ly4eWfDyHymd4uh2PXLs78EtJ5YptXFgWLdID+J2kGaUPkpk9liy23YFr8ZEXy+Ndc0KhzUUazlLLG3mcrJ3x0QFnmtnDmW3H49WTXSzHyT0y5++Gj3ddG2/AOF3S93BH9xi+stiiZa4NJA3Ah9mdbmY3lMpMHj5oYzPbu2ARG4aGs9Tyxsw+lDQUb5T5pSQyiu0xfMxirn2T0iiLz/AhTWPkIcPXlXSkmZ2XLIxBwImSTjWzL/OUrzNiZncly/z0dI9vSJsmAp8owgflRii1HDCzjyTdhCuvkyVdhXcCPhs4KedGgZ3wVuD3gaUk3QZcBJyJx/GSmZ2bGjS2wh3bNdvKWUuY2Z2SZgCXS1oOn2JxT+CAUGj5EdXPuURyrE8BPikprVTd2wY4HB+HeHNqEc3Lh7Y53pl2L9xpvQTu77kbnzt0TTxo4rNm9ru8G1XqBfmcsYNxpXa9mb1SsEgNRSi1uUDqUX4W8CszG5vpHlHa3hWYkfqE5dmx9gRgspldJJ+Z6nN5/PtbgBvNbEjyqf0AOMp8Zqgg6FQ0TOfbPEkjAabhES4oH89nZl+W0nKy0EpjRpfmqxmevkijBkbjkX8HpP5qjwGHhkILOiuh1KpA6nmPpCXTMBlwv9VU+UTEWcWSOxnFeROwkaS1U5olq3E87jebZmafW8xYFHRioqFgDkjDraabx8VaG/eVzZT0Nh5O5tt4fK8/10iXiCfwkEuDU7V3OC7vxnhfq66FShcEVSB8anNA8j/tjodp3hq4Go9icTE+4fBe+MQfgy3nWclbIo1wOBAf7P04Xk3eDZ9T8rkiZQuCahBKbTZIimFccvTfic/stIuZ3Z22N+FhurfHO96eaGbDChL3a6QIFv3xltgJwF2W87ymQTC3CKU2G0g6H5/d6UV8UuHVgXmAvc1sclneg3HlMTj6KgXB3CcaCmYDMzsC74N2DTDEzHbFhxX9HXxCYkmDU/bxeAfW5iJkDYJGI5RaByi1YErqbj55x9LAX1J18zDgbUnPA7fhygzcp3aEpfDSQRDMXaL62U4yA5S3x0PKHG1mn0q6HR9HuUfaviswxsyeyu5XoOhB0FCEUusAqevD5cBBWce/pFuBeYEBmSFRocyCoACi+tkKkvqmYH8lNgOuM7NhkppTx1XMbBAeQHGtUsZQaEFQDNH5tgWSn2x1YIykhcynOpsAfKOUJcUaWx9438x2KErWIAi+Iiy1FjCzmWZ2O/Bf4G+StsInoN1G0i7AkvLZt6/G4/YHQVADhE+tAplGgS2Avrjy3xk4AZ+5/GTgU3xy3z+Y2W2FCRsEwSxE9bMCSaGthc+qfQjwH3zG8jOAE8xshxTff2EzGxWNAkFQO4RSS2QVk6Rv4spstJm9kNL+gUeuPUfSmWZ2Bx6qORoFgqCGCJ8aIGlefDZtJC2PT2k2DuglaTvwkNz4jEvX4KGwgyCoQcKnxv8GqO+Ax+RfFdgQmAH8BJ+v8T4zuy/ljQk0gqCGCUsNMLN38X5mOwNPmtkEM5sI/Bn4CNghY7GFQguCGqahlVpmLOe38cHo+wKvSRoiaUkzexu4E48K+0ZxkgZB0F4avvopaVt86NOOZvaspE2BgfhA9JH4KIFLkzUXBEGN0+iW2jLAEDwO2rNAaaLhf6YsZwJPh0ILgs5DQ1pqmc61/YCzzWy3lF6aNq5rGgK1pJm9F/3QgqDz0FCWWmZGpwXS71igt6RfACSFthVwbhr7+X5KD4UWBJ2Ehul8m7HOtgF+Iulp4B18RvJTUofbB/Hw3CeXz9UZBEHnoKGqn5I2waeuOxD4KT6vwAFAL+B4fCaox83srqhyBkHnpK6VWupU2wt4Ps38tDs+tOkT4EJgVzMbLamXmY3P7BcKLQg6KfXuUxsEXACsmdY/Bf4EXAJsnRTaNsDhkkp+tvChBUEnpi6VWprNaU8zuxiPgfYbSf2Bh4GbgOdSvk2As4GnzOyTwgQOgqBq1J1Sk/QtYGhp3cxOA4bhMdBWwgekjwLuxhsFjjez2zMto0EQdGLqyqcmaWW8IeDPZnZVmkNgVTMbKelkPDz36WY2QlJ3ADObGj60IKgf6sZSSwrsNuDjpNCacWtsUwAzOwUf9nSmpHXMbKqZTU3bQqEFQZ1QN/3U0giAvYA7JB2Ghw961szOzeQ5TdLnhQkZBMFcp66qnwCpQeA+4FUz2yCTvj6whpldWphwQRDMdeqm+lnCzIbj83OuJOkggDR35xX4zFBBENQxdWeplUgW2514nLRVgTPSvAJBENQxdavUACStAzwA7GtmtxYsThAEOVDXSg1AUvfothEEjUPd+dQqECMFgqCBqHtLLQiCxqIRLLUgCBqIUGpBENQVodSCIKgrQqkFQVBXhFILgqCu+H8pK9euS+9+fwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {