GIVEN: a account
-
Compute
$X'=X_1+X_2+X_3$ and$x'=x_1+x_2+x_3$ ,$a'$ is shared to the 3 user. -
Send
$P$ to$(X')$ , the new account is$P'=H_s(rA')G+B'$ , where$r$ is a random scalar and$R$ is published to all. This new account can be spent iff$p'$ , which is$p'=H_s(rA')+b'$ or$p'=H_s(a'R)+b'$ . -
Every user computes a partial key image
$J_1=b_1H_p(P')$ ,$J_2$ ,$J_3$ , the key image is$J=H_s(a'R)H_p(P')+J_1+J_2+J_3$ . -
Set
$P'$ the$s$ -th account of$P_N$ , such that$P'=P_s$ . -
Every user picks a random scalar
$u_1$ ,$u_2$ ,$u_3$ , compute$u=u_1+u_2+u_3$ . -
Randomly choose scalar
$s_i$ for$i\neq s$ , compute:-
$L_s=uG, R_s=uH_p(P_s), c_{s+1}=H_s(m,L_s,R_s)$ -
$L_{s+1}=s_{s+1}G+c_{s+1}P_{s+1}, R_{s+1}=s_{s+1}H_p(P_{s+1}), c_{s+2}=H_s(m,L_{s+1},R_{s+1})$ -
...
-
$L_{s-1},R_{s-1},c_s$
-
-
Every user computes
$s_{s,1}=u_1-c_sb_1$ ,$s_{s,2}$ and$s_{s,3}$ , which are shared. -
Compute
$s_s=s_{s,1}+s_{s,2}+s_{s,3}-c_sH_s(a'R)=u-c_s(b'+H_s(a'R))$ .
-
Compute
$x_1X_2, x_1X_3, x_2X_3$ ... -
Set
$y_1=H_s(x_1X_2)$ ... -
Do same as above.