-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLecture3.tex
664 lines (559 loc) · 22.2 KB
/
Lecture3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
\documentclass[pdf,ps,8pt]{beamer}
\usepackage{lmodern}
\usepackage{amsmath}
\usepackage{color}
\usepackage{bbold}
\usepackage{cancel}
\usepackage{slashed}
\usepackage{graphicx}
\usepackage{verbatim}
\usepackage{textcomp}
\usetheme{Singapore}
\definecolor{palegray}{rgb}{0.82,0.822,0.82}
\newcommand{\preliminary}{
{ \rput{30}(7,-4.0){\fontsize{40}{40}\selectfont {\color{palegray}Preliminary Preliminary}} }
}
\newcommand{\textapprox}{\raisebox{0.5ex}{\texttildelow}}
\newcommand{\beq}{\begin{equation*}}
\newcommand{\eeq}{\end{equation*}}
\newcommand{\miniscule}{\fontsize{3pt}{4pt}\selectfont}
\def\MSbar{$\overline{\mathrm{MS}}$}
\def\gev{\,\mathrm{GeV}}
\def\mev{\,\mathrm{MeV}}
\def\fm{\,\mathrm{fm}}
\def\SU{\mathrm{SU}}
\def\su#1#2{\SU(#1)_\mathrm{#2}}
\def\rpisq{\langle r_\pi^2\rangle}
% final values
\def\rpisqsim{0.38(4)} % pole fit for 330 MeV pion
\def\rpisqsu2sim{0.354(31)} % su2 fit for 330 MeV pion
\def\rpisqsimlong{0.382(42)}
\def\rpisqphys{0.418(31)} % SU(2) chi extrap
\def\rpisqphyslong{0.418(31)}
\def\lsixr{-0.0093(10)} % SU(2)
\def\Lniner{0.0031(6)} % SU(3)
\newcommand{\chpt}{\chi^{\rm PT}}
\newcommand{\tchpt}{$\chi^{\rm PT}$}
\newcommand{\tchptthree}{$\chi^{\rm PT}_3$}
\newcommand{\tchpttwo}{$\chi^{\rm PT}_2$}
\newcommand{\xiav}{\langle\,\xi\,\rangle}
\newcommand{\xisqav}{\langle\,\xi^2\,\rangle}
\newcommand{\mD}{\left(\begin{array}{cc} \DO & \Dd \\ \Ddb&\DOb \end{array} \right)}
\newcommand{\Ob}{\bar{\Omega}}
\newcommand{\DO}{D_\Omega}
\newcommand{\Dd}{D_\partial}
\newcommand{\DOi}{D_\Omega^{-1}}
\newcommand{\DOid}{D_\Omega^{-\dagger}}
\newcommand{\Pd} {\mathbb{P}_\partial}
\newcommand{\PO} {\mathbb{P}_\Omega}
\newcommand{\DOb}{D_{\bar{\Omega}}}
\newcommand{\Ddb}{D_{\bar{\partial}}}
\newcommand{\DObi}{D_{\bar{\Omega}}^{-1}}
\newcommand{\DObid}{D_{\bar{\Omega}}^{-\dagger}}
\newcommand{\Pdb}{\mathbb{P}_{\bar{\partial}}}
\newcommand{\POb} {\mathbb{P}_{\bar\Omega}}
\newcommand{\Phidb}{\mathbb{\phi}_{\bar{\partial}}}
\newcommand{\etadb}{\mathbb{\eta}_{\bar{\partial}}}
\newcommand{\hDO}{\hat D_\Omega}
\newcommand{\hDd}{\hat D_\partial}
\newcommand{\hDOi}{\hat D_\Omega^{-1}}
\newcommand{\hPd} {\hat{\mathbb{P}}_\partial}
\newcommand{\hDOb}{\hat D_{\bar{\Omega}}}
\newcommand{\hDdb}{\hat D_{\bar{\partial}}}
\newcommand{\hDObi}{\hat D_{\bar{\Omega}}^{-1}}
\newcommand{\hPdb}{\hat{\mathbb{P}}_{\bar{\partial}}}
\newcommand{\mul}[1]{\left(\begin{array}{cc}#1 & 0 \\ 0& 0\end{array}\right)}
\newcommand{\mur}[1]{\left(\begin{array}{cc}0 & #1\\ 0& 0\end{array}\right)}
\newcommand{\mll}[1]{\left(\begin{array}{cc}0 & 0 \\ #1 & 0\end{array}\right)}
\newcommand{\mlr}[1]{\left(\begin{array}{cc}0 & 0 \\ 0& #1\end{array}\right)}
\newcommand{\mDO}{\mul{ \DO}}
\newcommand{\mDd}{\mur{ \Dd}}
\newcommand{\mDOi}{\mul{\DOi}}
\newcommand{\mPd} {\mlr{\Pd}}
\newcommand{\mDOb}{\mlr{\DOb}}
\newcommand{\mDdb}{\mll{\Ddb}}
\newcommand{\mDObi}{\mlr{\DObi}}
\newcommand{\mPdb}{\mul{\Pdb}}
\newcommand{\rmod}{\mathrm{mod}}
\newcommand{\rdiv}{\mathrm{div}}
\newcommand{\link}[1]{\href{#1}{ {\color{blue} #1} }}
\beamertemplatenavigationsymbolsempty
\begin{document}
\begin{frame}[fragile]\small\frametitle{ Computational Methods (practice) - Lecture 3 }
\begin{center}
{\color{red} Peter Boyle} (BNL, Edinburgh)
\begin{itemize}
\item Krylov methods and approximate matrix inversion
\item GMRES
\item Conjugate Gradients
\item Preconditioning
\item Red black preconditioning
\item Checkerboarded implementation
\item Eigensolvers and Deflation
\item Multigrid preconditioning
\end{itemize}
\end{center}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Krylov methods and approximate matrix inversion}
\begin{itemize}
\item Algorithms minimise a residual $|r|^2$, where
$$
r = M \psi - b
$$
\begin{itemize}
\item $r=0 \Leftrightarrow \psi = M^{-1} b$ so minimise $r$ under some norm
\end{itemize}
\item \emph{Krylov space} is the span of all polynomials of M and of O(N) $ {\rm sp} { b , M b, \ldots M^N b}$
\item \emph{Krylov solvers} iteratively apply a (sparse) matrix to build up this space
\item Unlike Chebyshev approximation these algorithms require no prior knowledge of the spectral range of M
\item Different algorithms invoke different rules for selecting these coefficients...\\ ...and have different storage requirements
\end{itemize}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Lanczos/Arnoldi orthogonal sequence}
\link{http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter10.pdf}
\href{https://www.researchgate.net/publication/232023768_The_Lanczos_and_conjugate_gradient_algorithms_in_finite_precision_arithmetic}
{{\color{blue} The Lanczos and conjugate gradient algorithms, Meurant}}
\begin{itemize}
\item Krylov space $K_n(b) = \{ b, A b , \ldots , A^n b \}$
\item Seek orthonormal basis: normalise components perpendicular to all prior vectors
\item $\beta_{j+1}| v_{j+1} \rangle = (1 - \sum\limits_{i=1}^j |v_i\rangle \langle v_i | )|A v_j \rangle $
\item Rewrite as:
$$
| A v_j \rangle = \sum\limits_{i=1}^{j+1} | v_i \rangle H_{ij}
$$
Where $H_{ij} = \langle v_i |A| v_j \rangle$ and is zero for $i>j+1$ by virtue of our sequential orthogonalisation.
%
% Can see $Hij = \langle v_i |A v_j \rangle$ for i=1...j by inspection.
% $H(j+1,j) = beta_{j+1} = <v_{j+1}|A| v_j> - 0
\item The ``Householder matrix'' H is tridiagonal when $A$ has Hermitian symmetry and an orthonormal basis for the Krylov space
is mapped out with a three term recurrence relation.\\
\item{ \bf Removes large storage requirements}
\item Can use this basis to build solutions $\Rightarrow$ Conjugate Gradients \& GMRES
\end{itemize}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ GMRES}
\link{https://github.com/paboyle/Grid/blob/develop/Grid/algorithms/iterative/GeneralisedMinimalResidual.h}
\begin{itemize}
\item Consider the orthonormal basis for the Krylov space: $x_n = \sum\limits_{j=1}^n c_j | v_j\rangle $
\item GMRES minimises the Euclidean norm $|r|^2$ with respect to the coefficients $c_n$ where $|r\rangle = |b\rangle - c_j | A v_j\rangle$
\item We know how to represent the matrix in this basis
$$
| A v_j \rangle = \sum\limits_{i=1}^{j+1} | v_i \rangle H_{ij}
$$
\item So this reduces to minimising $|\beta e_1 - H c |$, where $\beta = |b|$
\item Dense linear algebra (QR factorisation) in $H$ yields the minimisation
\item This requires all $N$ vectors to be retained, and coefficients selected \emph{after} $n$-iterations
\item GMRES(k) runs for $k$ iterations and then \emph{restarts} required to limit storage
\item Often used in a preconditioner/smoother
\end{itemize}
\href{https://en.wikipedia.org/wiki/Generalized_minimal_residual_method}{{\color{blue}https://en.wikipedia.org/wiki/Generalized\_minimal\_residual\_method}}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Hermitian case}
\begin{itemize}
\item Orthonormal basis for Krylov space with a simple, symmetric representation of $A$
$$
T_{ij} = \langle v_i | A | v_j \rangle
$$
\item When A is Hermitian positive definite, $\langle X|A|Y\rangle$ is a perfectly good inner product
\end{itemize}
\includegraphics[width=.5\textwidth]{Tridiagonal.pdf}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Conjugate Gradients}
\href{https://en.wikipedia.org/wiki/Conjugate_gradient_method}{{\color{blue}https://en.wikipedia.org/wiki/Conjugate\_gradient\_method}}
\begin{itemize}
\item Generate A-orthogonal sequence of search directions based on Lanczos sequence
\item Residuals are parallel to the Lanczos basis, mutually orthogonal set
\item Krylov solution to $A x = b$ has $x = \sum\limits_k \alpha_k p_k$:
$$
p_j^\dagger A x = p_j^\dagger b = \sum\limits_k \alpha_k p_j^\dagger A p_k = \alpha_j p_j^\dagger A p_j
\Rightarrow \alpha_j = \frac{p_j^\dagger b}{p_j^\dagger A p_j}$$
\end{itemize}
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{ConjGradWikipedia.pdf}
\end{column}
\begin{column}{0.5\textwidth}
{\miniscule
\begin{verbatim}
template<class Field>
void SimpleConjugateGradient(LinearOperatorBase<Field> &HPDop,const Field &b, Field &x)
{
RealD cp, c, alpha, d, beta, ssq, qq;
Field p(b), mmp(b), r(b);
HPDop.HermOpAndNorm(x, mmp, d, beta);
r = b - mmp;
p = r;
cp = alpha = norm2(p);
ssq = norm2(b);
RealD rsq = Tolerance * Tolerance * ssq;
for (int k = 1; k <= MaxIterations; k++) {
c = cp;
HPDop.HermOp(p, mmp);
d = real(innerProduct(p,mmp));
alpha = c / d;
r = r - alpha *mmp;
cp = norm2(r);
beta = cp / c;
x = x + alpha* p ;
p = r + beta* p ;
std::cout << "iteration "<<k<<" cp " <<std::sqrt(cp/ssq) << std::endl;
if (cp <= rsq) {
return;
}
}
assert(0);
}
\end{verbatim}
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ BiCGstab }
For Wilson Fermions, BICGstab is the fastest conventional Krylov solver
It is suited to solving the non-Hermitian system $$ D_w \psi = b$$
\link{https://github.com/paboyle/Grid/blob/develop/Grid/algorithms/iterative/BiCGSTAB.h}
\href{https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method}
{{\color{blue} https://en.wikipedia.org/wiki/Biconjugate\_gradient\_stabilized\_method}}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Convergence rate, critical slowing down, and preconditioning}
\begin{itemize}
\item The uniformity of the Chebyshev polynomial oscillations can be used to bound convergence rate via a maximum error over the spectral range
\begin{itemize}
\item Krylov solvers can do better than this worst case bound as polynomial coefficients are selected based on the actual spectrum
\item QCD often (index theorem) has a detached number of low modes (topological nature)
\end{itemize}
\item Condition numer $$\kappa = \frac{\lambda_{\rm max}}{\lambda_{\rm min}}$$
\item Theoretical convergence factor per iteration (c.f. R-number in epidemiology!)
$$
\sigma = \frac{\sqrt{k}-1}{\sqrt{k}+1}
$$
\item In infinite volume limit spectrum is dense and the worst case is the guaranteed case
\item Empirically, the theoretical $\sigma$ governs the long tail convergence of CG in practice
\item (left) Preconditioning: changing $\kappa$ by solving a related system
$$
P M \psi = P b
$$
\item If the condition number of $P M$ is substantially reduced, preconditioned system converges faster
\end{itemize}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Convergence rate, critical slowing down, and preconditioning}
\begin{itemize}
\item If the condition number of $P M$ is substantially reduced, preconditioned system converges faster
\item Ideally $P$ is a cheap-to-apply \emph{approximate inverse} of M
\item Left preconditioning
$$
P M \psi = P b
$$
\item Right preconditioning
$$
M P \psi^\prime = b ; \psi = P \psi^\prime
$$
\item Approximating $M^{-1}$ can be focussed regions of spectrum
\item Lower $\lambda_{\rm max}$
\begin{itemize}
\item Polynomial preconditioner (e.g. Chebyshev $1/x$ over high end of spectrum); reduce rate of inner-products / reductions
\item Domain decomposed smoother such Schwarz Alternating procedure : works for high end of spectrum; reduces communication and rate of inner-products / reductions
\end{itemize}
\item Raise $\lambda_{\rm min}$
\begin{itemize}
\item Deflation of low modes $P = (1 - \sum |i\rangle\langle i|) + \sum_i \frac{|i\rangle\langle i|}{\lambda_i} $
\item Up to rounding, deflation can be applied infrequently in CG due to orthogonal search sequence
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Schur decomposition}
\link{https://github.com/paboyle/Grid/blob/develop/Grid/algorithms/iterative/SchurRedBlack.h}
A matrix can be LDU factorised as follows. Each of $A, B, C$ or $D$ can themselves be sub-matrices
\begin{equation}
\left(
\begin{array}{cc}
A & B \\
C & D
\end{array}
\right)
=
\left(
\begin{array}{cc}
1 & 0 \\
C A^{-1} & 1
\end{array}
\right)
\left(
\begin{array}{cc}
A & 0\\
0 & D - C A^{-1} B
\end{array}
\right)
\left(
\begin{array}{cc}
1 & A^{-1} B \\
0 & 1
\end{array}
\right),
\end{equation}
where the Schur complement,
$$
S = D - C A^{-1} B.
$$
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Red-Black preconditioning}
We can write the Dirac operator in terms of even and odd lattice sites and perform an LDU decomposition:
\begin{equation}
M = \left(
\begin{array}{cc}
M_{ee} & M_{eo} \\
M_{oe} & M_{oo}
\end{array}
\right)
=
\left(
\begin{array}{cc}
1 & 0 \\
M_{oe} M_{ee}^{-1} & 1
\end{array}
\right)
\left(
\begin{array}{cc}
M_{ee} & 0\\
0 & M_{oo} - M_{oe}M_{ee}^{-1} M_{eo}
\end{array}
\right)
\left(
\begin{array}{cc}
1 & M_{ee}^{-1}M_{eo}\\
0 & 1
\end{array}
\right),
\end{equation}
where the Schur complement, is written as $M_{pc} = M_{oo} - M_{oe}M_{ee}^{-1} M_{eo}$.
\begin{itemize}
\item For Wilson Fermions the $M_{ee}$ is proportional to the identity.
\item For DWF and Wilson Clover Fermions the terms are non-trivial.
\item For the Wilson Clover term $M_{ee}$ depends on the gauge fields.
\item For DWF $M_{ee}$ is independent of the gauge fields.
\end{itemize}
$U$ and $L$ have determinant 1 and are trivially invertible:
$$
L^{-1} =
\left(
\begin{array}{cc}
1 & 0 \\
- M_{oe} M_{ee}^{-1} & 1
\end{array}
\right)
\quad\quad ; \quad \quad
U^{-1} =
\left(
\begin{array}{cc}
1 & - M_{ee}^{-1}M_{eo}\\
0 & 1
\end{array}
\right)
$$
For the odd checkerboard, $M\psi = \eta$ becomes
$$
M_{pc} \psi_o = \eta^\prime_o = (L^{-1} \eta)_o = \eta_o - M_{oe} M_{ee}^{-1} \eta_e
$$
The even checkerboard solution can be inferred via
$$
M_{ee} \psi_e + M_{eo} \psi_o = \eta_e \Rightarrow \psi_e = M_{ee}^{-1} (\eta_e - M_{eo} \psi_o)
$$
\begin{center}
\fbox{$M_{pc}$ (empirically) better conditioned than $M$: red black solvers converge O(3x) faster}
\end{center}
\end{frame}
\begin{frame}[fragile]\small\frametitle{Checkerboarding}
\begin{itemize}
\item Lattice QCD makes use of red-black preconditioning in many algorithms
\item Support for checkerboarded grids is required
\begin{itemize}
\item e.g. a field that lives only on the white or black sites of a chessboard
\item Shifting a ``black'' field by one site produces a white field and vice versa\\ Indexing and neighbour indexing is complicated by this
\item Stencil operators work with checkerboarded grids
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[height=0.2\textheight]{cb.pdf}
\begin{minipage}{0.1\textwidth}{\hspace{0.25\textwidth}$\longleftrightarrow$\vspace{0.15\textheight}}\end{minipage}
\includegraphics[height=0.2\textheight]{cbeven.pdf}
\begin{minipage}{0.06\textwidth}{\hspace{0.25\textwidth}$+$\vspace{0.15\textheight}}\end{minipage}
\includegraphics[height=0.2\textheight]{cbodd.pdf}
\end{center}
\begin{itemize}
\item Checkerboarded Grid objects can have arbitrary subset of dimensions involved in checkerboarding
\item Dimension ``collapsed'' can be selected (typically x-direction)
\item Natural support for 4d and 5d checkerboarded chiral fermions
\begin{itemize}
\item Neighbour indexing is integer heavy divide/modulo arithmetic
\item Precompute neighbour tables in high performance Stencil objects
\item Calculate dynamically for Cshift, looping over planes
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Eigensolvers}
\begin{itemize}
\item The Lanczos sequence can also be used to solve for eigenvectors, known as the Lanczos algorithm.
\item For a Hermitian matrix the Householder matrix is tridiagonal and represents the matrix $A$ within the Lanczos basis
$$
H_{ij} = T_{ij} = \langle v_i | A | v_j \rangle
$$
\item Diagonalising this (small) tridiagonal matrix tells us the basis rotation that maximally diagonalises the matrix A
\item Keeping the lowest $N$ and repeating leads to restarted Lanczos
\item Grid has a Chebyshev polynomial preconditioned Lanczos algorithm:
\end{itemize}
\link{https://github.com/paboyle/Grid/blob/develop/Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h}
\begin{itemize}
\item Lanczos is used to produce the lowest lying eigenvectors of the Dirac operator
\item Polynomial preconditioning: chebyshev polynomials suppress unwanted part of spectrum (univariate wiggles) - diverges outside this region.
\item Compute eigenvectors of the polynomial, map back to eigenvalues of the original matrix.
\item Why? Low lying eigenvectors can now be handled exactly: remove from the problem to eliminate critical slowing down
\item Deflation of low modes $G = \sum_i \frac{|i\rangle\langle i|}{\lambda_i} $ can be used as a guess.\\
\begin{itemize}
\item These will not reenter the Krylov space other than through:
\item a) Rounding errors
\item b) Imprecision in the eigenvectors/eigenvalues
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]\small\frametitle{ Exercise}
\begin{itemize}
\item Write a conjugate gradients algorithm to invert the (massive) Laplacian
\begin{itemize}
\item Introduce a small mass $m^2$ to the Laplacian example in Lecture 1 to regulate the spectrum.
\end{itemize}
\item Example Solution: \emph{strongly} suggest you write your own solution.
\href{https://github.com/paboyle/Grid/blob/develop/examples/Example_Laplacian_solver.cc}
{\color{blue} https://github.com/paboyle/Grid/blob/develop/examples/Example\_Laplacian\_solver.cc}
\item Extension:
\begin{itemize}
\item Verify the results on the free field via Fourier methods
\item Check gauge covariance
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]\small\frametitle{Multigrid preconditioners}
Multigrid is introduced as a \emph{Preconditioner}
Low mode subspace vectors $\phi$ generated in some way: tried
\begin{itemize}
\item Inverse iteration (c.f. Luscher)
\item Lanczos vectors
\item Chebyshev filters
\end{itemize}
\beq
\phi^b_k(x) = \left\{ \begin{array}{ccc}
\phi_k(x) &;& x\in b\\
0 &;& x \not\in b
\end{array}
\right.
\eeq
\beq{\rm span} \{ \phi_k\}\subset
{\rm span} \{ \phi_k^b\} .\eeq
\beq
P_S = \sum_{k,b} |\phi^b_k\rangle \langle \phi^b_k | \quad\quad ; \quad\quad P_{\bar{S}} = 1 - P_S
\eeq
\beq
M=
\left(
\begin{array}{cc}
M_{\bar{S}\bar{S}} & M_{S\bar{S}}\\
M_{\bar{S}S} &M_{SS}
\end{array}
\right)=
\left(
\begin{array}{cc}
P_{\bar{S}} M P_{\bar{S}} & P_S M P_{\bar{S}}\\
P_{\bar{S}} M P_S & P_S M P_S
\end{array}
\right)
\eeq
We can represent the matrix $M$ exactly on this subspace by computing its matrix elements,
known as the \emph{little Dirac operator} (coarse grid matrix in multi-grid)
\beq
A^{ab}_{jk} = \langle \phi^a_j| M | \phi^b_k\rangle
\quad\quad ; \quad\quad
(M_{SS}) = A_{ij}^{ab} |\phi_i^a\rangle \langle \phi_j^b |.
\eeq
the subspace inverse can be solved by Krylov methods and is:
\beq
Q =
\left( \begin{array}{cc}
0 & 0 \\ 0 & M_{SS}^{-1}
\end{array} \right)
\quad\quad ; \quad\quad
M_{SS}^{-1} = (A^{-1})^{ab}_{ij} |\phi^a_i\rangle \langle \phi^b_j |
\eeq
It is important to note that $A$ inherits a sparse structure from $M$ because well separated blocks do \emph{not} connect through $M$.
\end{frame}
\begin{frame}[fragile]\small\frametitle{Multigrid preconditioners}
Equivalence of a sequence of multigrid correction steps to a preconditioner can be seen if consider the $V_{11}$
with a pre-smoother (S), coarse correction (Q), and post-smoother (S) in sequence,
\begin{eqnarray}
x_1 &=& x_0 + S r_0 \\
x_2 &=& x_1 + Q r_1 \\
x_3 &=& x_2 + S r_2 .
\end{eqnarray}
Substitute and reduce the final update in terms of $r_0 = b - M x_0$ and $x_0$,
\begin{eqnarray}
r_1 &=& b-M x_1 = r_0 - M S r_0 \\
r_2 &=& b-M x_2 = r_0 - M S r_0 - M Q r_0 + M Q M S r_0 .
\end{eqnarray}
The final update sequence is then,
\begin{eqnarray}
x_3 &=& x_0 + \left[ S (1 - MQ ) + Q + (1 - QM) S + S( M Q M - M) S \right]r_0\\
&=& x_0 + \left[ S P_L + Q + P_R S + S P_L M S \right]r_0 .
\end{eqnarray}
This $V(1,1)$ multigrid error cycle suggests the adoption of the matrix,
\beq
\left[ S P_L + Q + P_R S + S P_L M S \right]
\eeq
applied to the current residual as a preconditioner in an outer Krylov solver, with its implementation
being as the above sequence of error correction steps based on the current residual $r_0$ as input.
\end{frame}
\begin{frame}[fragile]\small\frametitle{Multigrid : how it works}
\begin{itemize}
\item Project to low dimensional basis that captures the low mode space
\item Represent the original matrix in this truncated basis
\item Inverse of this truncated representation corrects the current solution
\end{itemize}
\begin{center}
\includegraphics[width=0.5\textwidth]{iterative-solutions-multigrid-v-web.png}
\includegraphics[width=0.3\textwidth]{Finished-8x8-board-2.jpg}
\end{center}
\begin{tabular}{c|cccc}
& Fine & Coarse & CoarseCoarse & Evecs\\
\hline
$\lambda_{\rm min}$ & 1.0e-6 & 1.0e-6 & 1.0e-6 & 1.0e-6 \\
$\lambda_{\rm max}$ & 60 & 11 & 5.0 & 4.0e-3
\end{tabular}
\begin{itemize}
\item Improve the condition number by lowering the cut-off as you go coarser
\item Arguably a surface to volume suppression of the high modes as you block
\item Smoother step helps cheaply wipe out the effects while preserving the low mode element of coarse
correction
\end{itemize}
\end{frame}
\begin{frame}[fragile]\small\frametitle{Domain Wall Multigrid}
\small
\begin{columns}
\begin{column}{0.6\textwidth}
\begin{itemize}
\item Preprint: https://arxiv.org/pdf/2103.05034.pdf
\item Spectrum of DWF makes coarsening nearest neighbour operator \emph{hard}
\begin{itemize}
\item Polynomial approximation to $\frac{1}{z}$ in region of complex plane enclosing origin
\item Typically solve normal equations on positive definite $M^\dagger M$
\item Nearest neighbour coarsenings of $\gamma_5 R_5 D_{dwf}$ (Herm, indefinite)
\end{itemize}
\item Novel chebyshev polynomial setup of multigrid
\item Result: \\Set up and solve twice $D_{dwf}$ faster than red-black CG
\item HMC focus; use compressed Lanczos for valence analysis
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
\includegraphics[width=0.8\textwidth]{HDCR.pdf}
\includegraphics[width=0.8\textwidth]{DWF_evalues.pdf}
\includegraphics[width=0.8\textwidth]{cheby.pdf}
\end{column}
\end{columns}
\end{frame}
\end{document}