forked from parseablehq/parseable
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkafka_log_stream_generator.py
237 lines (197 loc) · 8.65 KB
/
kafka_log_stream_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Parseable Server (C) 2022 - 2024 Parseable, Inc.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import json
import logging
import os
import random
import sys
import time
import uuid
from datetime import datetime, timezone
from typing import Dict, Any
from confluent_kafka import Producer
from confluent_kafka.admin import AdminClient
from confluent_kafka.cimpl import NewTopic
from faker import Faker
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
fake = Faker()
# Kafka Configuration
KAFKA_BROKERS = os.getenv("KAFKA_BROKERS", "localhost:9092")
KAFKA_TOPIC = os.getenv("KAFKA_TOPIC", "local-logs-stream")
NUM_PARTITIONS = int(os.getenv("NUM_PARTITIONS", "6")) # Default partitions
REPLICATION_FACTOR = int(os.getenv("REPLICATION_FACTOR", "1")) # Default RF
TOTAL_LOGS = int(os.getenv("TOTAL_LOGS", "100")) # Total logs to produce
LOG_RATE = int(os.getenv("LOG_RATE", "50")) # Logs per second
REPORT_EVERY = 5_000 # Progress report frequency
# Kubernetes Configuration
K8S_NAMESPACES = ["default", "kube-system", "monitoring", "logging", "app"]
CONTAINER_IMAGES = [
"parseable/parseable:v1.8.1",
"parseable/query-service:v1.8.1",
"parseable/ingester:v1.8.1",
"parseable/frontend:v1.8.1"
]
NODE_TYPES = ["compute", "storage", "ingestion"]
COMPONENTS = ["query", "storage", "ingestion", "frontend"]
producer_conf = {
"bootstrap.servers": KAFKA_BROKERS,
"queue.buffering.max.messages": 200_000,
"queue.buffering.max.ms": 100, # Up to 100ms linger
"batch.num.messages": 10_000,
"compression.type": "lz4", # Compression (lz4, snappy, zstd, gzip)
"message.send.max.retries": 3,
"reconnect.backoff.ms": 100,
"reconnect.backoff.max.ms": 3600000,
# "acks": "all", # Safer but can reduce throughput if replication is slow
}
admin_client = AdminClient({"bootstrap.servers": KAFKA_BROKERS})
producer = Producer(producer_conf)
def generate_kubernetes_metadata() -> Dict[str, str]:
namespace = random.choice(K8S_NAMESPACES)
sts_name = f"parseable-{random.choice(COMPONENTS)}"
pod_index = str(random.randint(0, 5))
pod_name = f"{sts_name}-{pod_index}"
return {
"kubernetes_namespace_name": namespace,
"kubernetes_pod_name": pod_name,
"kubernetes_pod_id": str(uuid.uuid4()),
"kubernetes_pod_ip": f"10.{random.randint(0, 255)}.{random.randint(0, 255)}.{random.randint(0, 255)}",
"kubernetes_host": f"ip-10-0-{random.randint(0, 255)}-{random.randint(0, 255)}.ec2.internal",
"kubernetes_container_name": random.choice(COMPONENTS),
"kubernetes_container_image": random.choice(CONTAINER_IMAGES),
"kubernetes_container_hash": fake.sha256(),
"kubernetes_docker_id": fake.sha256()[:12],
"kubernetes_labels_app": "parseable",
"kubernetes_labels_component": random.choice(COMPONENTS),
"kubernetes_labels_pbc_nodetype": random.choice(NODE_TYPES),
"kubernetes_labels_spot": random.choice(["true", "false"]),
"kubernetes_labels_sts_name": sts_name,
"kubernetes_labels_statefulset.kubernetes.io/pod-name": pod_name,
"kubernetes_labels_apps.kubernetes.io/pod-index": pod_index,
"kubernetes_labels_controller-revision-hash": fake.sha256()[:10],
"kubernetes_labels_original_sts_name": sts_name,
"kubernetes_labels_parseable_cr": "parseable-cluster"
}
def generate_log_entry() -> Dict[str, Any]:
now = datetime.now(timezone.utc)
# Generate request-related data
status_code = random.choice([200, 200, 200, 201, 400, 401, 403, 404, 500])
response_time = random.randint(10, 2000)
# Basic log structure
log_entry = {
"app_meta": json.dumps({"version": "v0.8.0", "component": random.choice(COMPONENTS)}),
"device_id": random.randint(1000, 9999),
"host": f"ip-{random.randint(0, 255)}-{random.randint(0, 255)}-{random.randint(0, 255)}-{random.randint(0, 255)}",
"level": random.choice(["INFO", "INFO", "INFO", "WARN", "ERROR"]),
"location": fake.city(),
"message": fake.sentence(),
"os": random.choice(["linux/amd64", "linux/arm64"]),
"process_id": random.randint(1, 65535),
"request_body": json.dumps({"query": "SELECT * FROM logs LIMIT 100"}),
"response_time": response_time,
"runtime": "python3.9",
"session_id": str(uuid.uuid4()),
"source": "application",
"source_time": now.isoformat(),
"status_code": status_code,
"stream": "stdout",
"time": int(now.timestamp() * 1000),
"timezone": "UTC",
"user_agent": fake.user_agent(),
"user_id": random.randint(1000, 9999),
"uuid": str(uuid.uuid4()),
"version": "v0.8.0"
}
# Add Kubernetes metadata
log_entry.update(generate_kubernetes_metadata())
return log_entry
def create_topic(topic_name: str, num_partitions: int, replication_factor: int) -> None:
new_topic = NewTopic(
topic=topic_name,
num_partitions=num_partitions,
replication_factor=replication_factor
)
logger.info(f"Creating topic '{topic_name}' with {num_partitions} partitions and RF {replication_factor}...")
fs = admin_client.create_topics([new_topic])
for topic, f in fs.items():
try:
f.result()
logger.info(f"Topic '{topic}' created successfully.")
except Exception as e:
if "TopicExistsError" in str(e):
logger.warning(f"Topic '{topic}' already exists.")
else:
logger.error(f"Failed to create topic '{topic}': {e}")
def delivery_report(err, msg):
if err:
logger.error(f"Delivery failed for message {msg.key()}: {err}")
else:
logger.debug(f"Message delivered to {msg.topic()} [{msg.partition()}]")
def main():
logger.info("Starting continuous log producer...")
create_topic(KAFKA_TOPIC, NUM_PARTITIONS, REPLICATION_FACTOR)
logger.info(f"Broker: {KAFKA_BROKERS}, Topic: {KAFKA_TOPIC}, Rate: {LOG_RATE} logs/sec")
message_count = 0
start_time = time.time()
batch_start_time = time.time()
limit_reached = False
try:
while True:
current_time = time.time()
if not limit_reached:
if message_count < TOTAL_LOGS:
log_data = generate_log_entry()
log_str = json.dumps(log_data)
# Send to Kafka
producer.produce(
topic=KAFKA_TOPIC,
value=log_str,
callback=delivery_report
)
message_count += 1
if message_count % REPORT_EVERY == 0:
batch_elapsed = current_time - batch_start_time
total_elapsed = current_time - start_time
logger.info(f"Batch of {REPORT_EVERY} messages produced in {batch_elapsed:.2f}s")
logger.info(f"Total messages: {message_count}, Running time: {total_elapsed:.2f}s")
logger.info(f"Current rate: ~{REPORT_EVERY / batch_elapsed:,.0f} logs/sec")
producer.flush()
batch_start_time = current_time
elif not limit_reached:
logger.info(
f"Reached TOTAL_LOGS limit of {TOTAL_LOGS}. Continuing to run without producing messages...")
producer.flush()
limit_reached = True
if limit_reached:
time.sleep(5)
else:
# Sleep to maintain the logs/second rate
time.sleep(1 / LOG_RATE)
except KeyboardInterrupt:
logger.warning("Interrupted by user! Flushing remaining messages...")
producer.flush()
except Exception as e:
logger.error(f"An error occurred: {e}")
finally:
logger.info("Flushing producer...")
producer.flush()
logger.info("Generator stopped.")
if __name__ == "__main__":
main()