-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_scalp_features.py
153 lines (145 loc) · 5.41 KB
/
compute_scalp_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
import sys
import os
import numpy as np
import pandas as pd
import mne
from mne_bids import BIDSPath, read_raw_bids, find_matching_paths
from ptsa.data.filters import (
MorletWaveletFilter,
ButterworthFilter,
MonopolarToBipolarMapper,
)
from ptsa.data.timeseries import TimeSeries
from scipy.stats import zscore
import xarray
from ptsa.data.concat import concat
import pickle
from scipy.stats import zscore
def mne_to_ptsa(ep):
"""Create an PTSA TimeSeries (essentially xarray) version of MNE epoch data"""
assert ep.metadata is not None, "Please define mne.Epoch.metadata"
ts = TimeSeries(
ep.get_data(copy=True),
dims=("event", "channel", "time"),
coords={
"event": pd.MultiIndex.from_frame(ep.metadata),
"channel": ep.info["ch_names"],
"time": ep.times,
"samplerate": ep.info["sfreq"],
},
name="data",
)
ts = ts.reset_index("event")
return ts
def compute_scalp_features(
subject,
settings_path,
normalize=False,
bids_root="~/data/nicls_bids/",
save_path="~/data/features/",
):
"""
Compute log-transformed powers, averaged over time and stacked as (frequency, channel) to create features
Normaize within each session.
"""
# expand paths
bids_root = os.path.expanduser(bids_root)
settings_path = os.path.expanduser(settings_path)
save_path = os.path.expanduser(save_path)
# load settings
with open(settings_path, "rb") as f:
settings = pickle.load(f)
# find all sessions for subject
bids_paths = find_matching_paths(
bids_root,
subjects=subject,
tasks="NiclsCourierReadOnly",
datatypes="eeg",
extensions=".bdf",
)
# read in data and compute features one session at a time
feats = []
for i, bids_path in enumerate(bids_paths):
print(f"Reading session {i} data")
# intialize data reader, load words events and buffered eeg epochs
events_path = bids_path.copy().update(suffix="events", extension=".tsv")
event_df = pd.read_csv(events_path, sep="\t")
raw = read_raw_bids(
bids_path, extra_params={"infer_types": True}, verbose=False
)
mne_events, mne_event_id = mne.events_from_annotations(raw, verbose=False)
eeg = mne.Epochs(
raw,
mne_events,
event_id={"WORD": mne_event_id["WORD"]},
event_repeated="drop",
tmin=(settings["rel_start"] - settings["buffer_time"]) / 1000.0,
tmax=(settings["rel_stop"] + settings["buffer_time"]) / 1000.0,
baseline=None,
preload=True,
)
eeg.metadata = event_df.query("trial_type=='WORD'").reset_index(drop=True)
eeg = mne_to_ptsa(eeg)
# select relevant channels
if settings["reference"] == "average":
eeg = eeg[:, :128]
if (
eeg.channel[0].str.startswith("E") and not settings["clean"]
): # EGI system
eeg.drop_sel({"channel": ["E8", "E25", "E126", "E127"]})
eeg -= eeg.mean("channel")
elif settings["reference"] == "bipolar":
bipolar_pairs = np.loadtxt(
"/home1/jrudoler/biosemi_cap_bipolar_pairs.txt", dtype=str
)
mapper = MonopolarToBipolarMapper(bipolar_pairs, channels_dim="channel")
eeg = eeg.filter_with(mapper)
eeg = eeg.assign_coords(
{"channel": np.array(["-".join(pair) for pair in eeg.channel.values])}
)
else:
raise ValueError("reference setting unknown")
# filter out line noise at 60 and 120Hz
eeg = ButterworthFilter(filt_type="stop", freq_range=[58, 62], order=4).filter(
eeg
)
eeg = ButterworthFilter(
filt_type="stop", freq_range=[118, 122], order=4
).filter(eeg)
# highpass filter to account for drift
eeg = ButterworthFilter(filt_type="highpass", freq_range=1).filter(eeg)
pows = MorletWaveletFilter(
settings["freqs"], width=settings["width"], output="power", cpus=25
).filter(eeg)
del eeg
pows = (
pows.remove_buffer(settings["buffer_time"] / 1000)
+ np.finfo(float).eps / 2.0
)
pows = pows.reduce(np.log10)
# swap order of events and frequencies --> result is events x frequencies x channels x time
# next, average over time
pows = pows.transpose("event", "frequency", "channel", "time").mean("time")
# reshape as events x features
pows = pows.stack(features=("frequency", "channel")).reset_index("features")
# normalize along event axis
if normalize:
pows = pows.reduce(func=zscore, dim="event", keep_attrs=True, ddof=1)
feats.append(pows)
del pows
feats = concat(feats, dim="event")
settings.update({"normalize": int(normalize)})
feats = feats.assign_attrs(settings)
suffix = "_feats.h5" if normalize else "_raw_feats.h5"
if settings["save"]:
os.path.makedirs(save_path, exist_ok=True)
feats.to_hdf(os.path.join(save_path, f"{subject}_{suffix}"))
return feats
if __name__ == "__main__":
compute_scalp_features(
sys.argv[1],
experiment="NiclsCourierClosedLoop",
normalize=True,
save_path="/scratch/nicls_intermediate/closed_loop/encoding_powers/",
)