-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathplotellipse.m
215 lines (185 loc) · 6.35 KB
/
plotellipse.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
%PLOTELLIPSE Draw an ellipse
%
% PLOTELLIPSE(E) draws an ellipse defined by X'EX = 1
% on the current plot, centered at the origin. E is a 2-by-2 matrix.
% The ellipse is added to the current plot irrespective of hold status.
%
% PLOTELLIPSE(EV) draws an ellipse defined by EV = [A B ALPHA],
% which are the radius in the x and y directions, and the angle of
% rotation, ALPHA, in radians.
%
% PLOTELLIPSE(..., C) as above but the ellipse is centered at C = [X Y].
%
% H = PLOTELLIPSE(...) returns a graphic handle, H, to the plotted
% ellipse.
%
% PLOTELLIPSE(..., Name=Value) specifies additional
% options using one or more name-value pair arguments.
%
% The ellipse is defined by x' * E * x = s^2 where x is in R^2
% and s is the scale factor.
%
% Options:
%
% confidence - Confidence interval, range 0 to 1. If a confidence interval
% is given then E is interpretted as an inverse covariance
% matrix and the ellipse size is computed using an inverse
% chi-squared function. This uses CHI2INV, if available, or
% an internal implementation.
% Default: 1
% inverted - If true, E is inverted (e.g. covariance matrix)
% Default: false
% alter - Alter existing ellipses with handle H. This can be used to
% create a smooth animation.
% npoints - Use N points to define the ellipse
% Default: 40
% edgecolor - Color of the ellipse boundary edge, MATLAB color spec
% Default: "black"
% fillcolor - Color of the ellipses's interior, MATLAB color spec
% Default: "none"
% alpha - Transparency of the fillcolored ellipse: 0=transparent, 1=solid
% Default: 1
%
%
% For some common cases we require inv(E), for example
% - for robot manipulability
% \nu inv(J*J') \nu
% - a covariance matrix
% (x - \mu)' inv(P) (x - \mu)
% so to avoid inverting E twice to compute the ellipse, we flag that
% the inverse is provided using "inverted".
%
% For an unfilled ellipse:
% - any standard MATLAB LineStyle such as 'r' or 'b---'.
% - any MATLAB LineProperty options can be given such as 'LineWidth', 2.
% For a filled ellipse any MATLAB PatchProperty options can be given.
%
%
% Example:
% % Draw red ellipse
% H = PLOTELLIPSE(diag([1 2]), [3 4], "r");
%
% % Move the ellipse
% PLOTELLIPSE(diag([1 2]), [5 6], alter=H);
%
% % Change color to black
% PLOTELLIPSE(diag([1 2]), [5 6], alter=H, LineColor="k");
%
% % Draw 95% confidence ellipse
% PLOTELLIPSE(COVAR, confidence=0.95);
%
% References:
% - Robotics, Vision & Control: Fundamental algorithms in MATLAB, 3rd Ed.
% P.Corke, W.Jachimczyk, R.Pillat, Springer 2023.
% Appendix C.1.4
%
% See also PLOTCIRCLE, PLOT_BOX, CHI2INV.
% Copyright 2022-2023 Peter Corke, Witek Jachimczyk, Remo Pillat
function handles = plotellipse(varargin)
% If the second parameter is a Linespec, add a default center.
% inputParser cannot handle only passing the 2nd optional argument.
if length(varargin) > 1 && validateLinespec(varargin{2})
varargin = [varargin(1) {[0 0]} varargin(2:end)];
end
% Standard input parsing
ip = inputParser();
ip.KeepUnmatched = true;
ip.addRequired("E", @(x) isnumeric(x) && isreal(x));
ip.addOptional("center", [0 0], @(x) isnumeric(x) && isreal(x) && (numel(x) == 2));
ip.addOptional("ls", "", @validateLinespec);
ip.addParameter("fillcolor", "none");
ip.addParameter("alpha", 1, @(x) isnumeric(x) && isreal(x) && isscalar(x));
ip.addParameter("edgecolor", "k");
ip.addParameter("alter", [], @(x) ishandle(x));
ip.addParameter("npoints", 40);
ip.addParameter("confidence", [], @(x) isnumeric(x));
ip.addParameter("inverted", false, @(x) islogical(x));
ip.parse(varargin{:});
args = ip.Results;
arglist = namedargs2cell(ip.Unmatched);
E = args.E;
% process the probability
if isempty(args.confidence)
s = 1;
else
if exist('chi2inv', 'file') == 2
s = sqrt(chi2inv(args.confidence, 2));
else
s = sqrt(chi2inv_rvc(args.confidence, 2));
end
end
holdon = ishold();
hold on
if all(size(E) == [1 3])
% ellipse defined by parameters
a = E(1); b = E(2); orientation = E(3);
A = (b^2-a^2)*sin(orientation)^2 + a^2;
B = (a^2-b^2)*sin(orientation)^2 + b^2;
C = sin(2*orientation)*(a^2-b^2)/2;
E = [A C;C B];
elseif all(size(E) == [2 2])
if ~args.inverted
E = inv(E);
end
else
error('RVC3:plotellipse:badarg', ...
'ellipse is defined by a 1x3 or 2x2 matrix');
end
%% plot an ellipse
% define points on a unit circle
th = linspace(0, 2*pi, args.npoints);
pc = [cos(th);sin(th)];
% warp it into the ellipse
pe = sqrtm(E)*pc * s;
% offset it to optional non-zero center point
pe = args.center(:) + pe;
x = pe(1,:); y = pe(2,:);
% plot 2D data
if length(args.center) > 2
% plot 3D data
z = ones(size(x))*args.center(3);
else
z = zeros(size(x));
end
if strcmpi(args.fillcolor, "none")
% outline only, draw a line
if isempty(args.ls)
if ~isempty(args.edgecolor)
arglist = [{"Color"}, args.edgecolor, arglist];
end
else
arglist = [{args.ls}, arglist];
end
if isempty(args.alter)
h = plot3(x', y', z', arglist{:});
else
set(args.alter, "xdata", x, "ydata", y);
end
else
% fillcolored, use a patch
if ~isempty(args.edgecolor)
arglist = ["EdgeColor", args.edgecolor, arglist];
end
arglist = ["FaceAlpha", args.alpha, arglist];
if isempty(args.alter)
h = patch(x', y', z', args.fillcolor, arglist{:});
else
set(args.alter, "xdata", x, "ydata", y);
end
end
if ~holdon
hold off
end
if nargout > 0
handles = h;
end
end
function valid = validateLinespec(linespec)
%validateLinespec Validate a LineSpec input
if ~(ischar(linespec) || isStringScalar(linespec))
valid = false;
return;
end
[style, color, marker] = colstyle(linespec);
valid = ~isempty(style) || ~isempty(color) || ~isempty(marker);
end