-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathscanner.py
218 lines (189 loc) · 6.31 KB
/
scanner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
"""
@author: phdenzel
Scanner transform for images of rectangular shapes
"""
# # Module imports
import sys
import os
from shutil import rmtree
import math
import numpy as np
import cv2
from mkpath import mkdir_p
VERBOSE = True
# # File import
# Get image to work with
filename = sys.argv[1]
if os.getcwd() in filename:
filepath = filename
filename = filepath.split("/")[-1]
else:
filepath = os.getcwd()+'/'+filename
filename = filepath.split("/")[-1]
# just making sure...
try:
# Python 3
FileNotFoundError
except NameError:
# Python 2
FileNotFoundError = IOError
try:
file(filepath)
except FileNotFoundError:
print("No such file found...")
sys.exit(1)
# get path of repository
root = "/".join(os.path.realpath(__file__).split("/")[:-1])+"/"
# verbosity
if VERBOSE:
print("Repository in:\t\t{}".format(root))
print("Image file:\t\t{}".format(filename))
def primary_transf(rgba, roundup=127, rounddown=127):
"""
Pronounce pictures with their primary colors beyond roundup and rounddown
"""
width, height, channels = rgba.shape
primary = rgba*1
primary[np.greater_equal(primary, roundup)] = 255
primary[np.less(primary, rounddown)] = 0
return primary
def rect_ify(h):
"""
rect_ify - Rectify
"""
h = h.reshape((4, 2))
hrect = np.zeros((4, 2), dtype=np.float32)
add = h.sum(1)
hrect[0] = h[np.argmin(add)]
hrect[2] = h[np.argmax(add)]
diff = np.diff(h, axis=1)
hrect[1] = h[np.argmin(diff)]
hrect[3] = h[np.argmax(diff)]
return hrect
def rect_angle(h):
"""
rect_angle - Transform a polygon close to a rectangle into a rectangle
"""
hrect = np.zeros((4, 1, 2))
hrect[0] = h[np.argmin(h[:, :, 0])]
hrect[1] = h[np.argmax(h[:, :, 0])]
hrect[2] = h[np.argmax(h[:, :, 1])]
hrect[3] = h[np.argmin(h[:, :, 1])]
return hrect
# # Import image
image = cv2.imread(filepath)
width, height, channels = image.shape
aspr = float(width)/height
_width, _height = int(800*aspr), 800
_width, _height = width, height
# verbosity
if VERBOSE:
print("Image dimensions:\t{}x{} in {} channels".format(
width, height, channels))
# Resize image
# adjust dimensions if important content is lost
image = cv2.resize(image, (_width, _height))
# verbosity
if VERBOSE:
print("Resizing to {}x{}...".format(_width, _height))
# Original
orig = image.copy()
# Some transforms
contrast = primary_transf(image, roundup=177, rounddown=77)
if VERBOSE:
print("Grayscaling...")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
if VERBOSE:
print("Blurring...")
blurred = cv2.bilateralFilter(gray, 1, 10, 120)
blurred = cv2.GaussianBlur(blurred, (5, 5), 0)
# blurred = cv2.medianBlur(gray, 15)
if VERBOSE:
print("Running Canny edge detection...")
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
dilated = cv2.dilate(blurred, kernel)
edged = cv2.Canny(dilated, 10, 250)
edged_orig = edged.copy()
closed = cv2.morphologyEx(edged, cv2.MORPH_CLOSE, kernel)
# Contours in edged image
if VERBOSE:
print("Finding contours...")
_, contours, h = cv2.findContours(
closed, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# _, contours, _ = cv2.findContours(
# dilated, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:5]
# approximate contour
if VERBOSE:
print("Filtering edge contours...")
for c in contours[1:]:
p = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.1*p, True)
if len(approx) == 4:
# rect = cv2.minAreaRect(approx)
# box = cv2.boxPoints(rect)
# box = np.int0(box)
# target = box
target = approx
break
# outline target contour
cv2.drawContours(image, [target], -1, (0, 0, 255), 5)
while False:
cv2.startWindowThread()
cv2.namedWindow("Is this the window you want?", cv2.WINDOW_NORMAL)
cv2.imshow("Is this the window you want?", image)
cv2.imshow("Is this the window you want?", image)
cv2.waitKey(0)
# Mapping target points to 800x800 quadrilateral
approx = rect_ify(target)
if VERBOSE:
print("Transforming perspective...")
# TODO: rotate if necessary
dstw = 100 * int(math.ceil(0.005*(approx[1][0]+approx[2][0]
- approx[0][0]-approx[3][0])))
dsth = 100 * int(math.ceil(0.005*(approx[2][1]+approx[3][1]
- approx[1][1]-approx[0][1])))
pts2 = np.float32([[0, 0], [dstw, 0], [dstw, dsth], [0, dsth]])
M = cv2.getPerspectiveTransform(approx, pts2)
dst = cv2.warpPerspective(orig, M, (dstw, dsth))
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
# Threshold warped image
ret, th1 = cv2.threshold(dst, 127, 255, cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(dst, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 11, 2)
th3 = cv2.adaptiveThreshold(dst, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
ret2, th4 = cv2.threshold(dst, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# verbosity
if VERBOSE:
print("Thresholding warped images...")
rmtree(root+"tmp")
mkdir_p(root+"tmp/")
imgid = filename.split('.')[0].split('_')[-1]
cv2.imwrite(root+"tmp/dst_"+imgid+".jpg", dst)
cv2.imwrite(root+"tmp/blurred.jpg", blurred)
cv2.imwrite(root+"tmp/dilated.jpg", dilated)
cv2.imwrite(root+"tmp/edged.jpg", edged_orig)
cv2.imwrite(root+"tmp/gray.jpg", gray)
cv2.imwrite(root+"tmp/original.jpg", orig)
cv2.imwrite(root+"tmp/outline.jpg", image)
cv2.imwrite(root+"tmp/primary.jpg", contrast)
cv2.imwrite(root+"tmp/thresh_binary.jpg", th1)
cv2.imwrite(root+"tmp/thresh_mean.jpg", th2)
cv2.imwrite(root+"tmp/thresh_gauss.jpg", th3)
cv2.imwrite(root+"tmp/otsu.jpg", th4)
# verbosity
if VERBOSE:
print("Saving transforms in tmp/ directory...")
# # Other thresholding methods
# ret, thresh1 = cv2.threshold(dst, 127, 255, cv2.THRESH_BINARY)
# ret, thresh2 = cv2.threshold(dst, 127, 255, cv2.THRESH_BINARY_INV)
# ret, thresh3 = cv2.threshold(dst, 127, 255, cv2.THRESH_TRUNC)
# ret, thresh4 = cv2.threshold(dst, 127, 255, cv2.THRESH_TOZERO)
# ret, thresh5 = cv2.threshold(dst, 127, 255, cv2.THRESH_TOZERO_INV)
# cv2.imwrite(root+"tmp/Thresh Binary.jpg", thresh1)
# cv2.imwrite(root+"tmp/Thresh Binary_INV.jpg", thresh2)
# cv2.imwrite(root+"tmp/Thresh Trunch.jpg", thresh3)
# cv2.imwrite(root+"tmp/Thresh TOZERO.jpg", thresh4)
# cv2.imwrite(root+"tmp/Thresh TOZERO_INV.jpg", thresh5)