-
Notifications
You must be signed in to change notification settings - Fork 33
/
TigerTank.py
423 lines (364 loc) · 16 KB
/
TigerTank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#!/usr/bin/python
from __future__ import absolute_import, division, print_function, unicode_literals
""" Landscape from ElevationMap with model tanks and buildings. Demonstrates using
a function to draw the various parts of the tank and the ElevationMap.pitch_roll()
method to make models conform (aproximately) to the surface of an ElevationMap.
Also look out for:
Parent-child Shapes. The tank gun is a child of the turret which is a child
of the body. The gun is raised as the mouse view points to looking up by rotating
about its local x axis. The turret rotates about its local y axis. This shows how to
combine various rotations about different axes without the objects falling apart!
Note that the origin for all three component Shapes of the tank model is
at the pivot point of the turret. However for the gun the rotation is moved
to the front edge of the turret by using cz=2.5 in the constructor.
In order for the missiles to be fired from the tanks correctly this demo
shows the use of Shape.transform_direction() which generate a 3D vector
representing the direction of the gun in global space. This is used to provide
launch velocity for the missiles which are then rotated to align with their
current velocity (on their parabola) using Shape.rotate_to_direction()
The Shape.shallow_clone() method has been used to make mulitple copies of
the tanks and missiles. This creates instances of the position, rotation,
scale etc properties of the Shape but shares the mesh and texture data.
Rather than use the normal methods for positioning and rotating shapes the
@property and associated setter methods have been used Shape.xyz and Shape.rxryrz
2D shader usage. Drawing onto an ImageSprite canvas placed in front of the camera
imediately after reset() This is used to generate a splash screed during file
loading and to draw a telescopic site view and a navigation map with the locations
of the tanks.
The ElevationMap uses the uv_elev_map shader which allow four diffuse and
four normal textures to be mapped to the terrain.
This demo also uses a tkinter tkwindow but creates it as method of Display. Compare
with the system used in demos/MarsStation.py
Tip: u raises gun, j lowers gun, f fires gun
"""
import math, random, time, traceback
import demo
import pi3d
LOGGER = pi3d.Log(__name__, level='INFO')
# Create a Tkinter window
winw, winh, bord = 1200, 600, 0 #64MB GPU memory setting
# winw,winh,bord = 1920,1200,0 #128MB GPU memory setting
DISPLAY = pi3d.Display.create(tk=True, window_title='Tiger Tank demo in Pi3D',
w=winw, h=winh - bord, far=3000.0,
background=(0.4, 0.8, 0.8, 1), frames_per_second=16)
#inputs = InputEvents()
#inputs.get_mouse_movement()
CAMERA = pi3d.Camera()
CAM2D = pi3d.Camera(is_3d=False)
pi3d.Light(lightpos=(-1, -1, 1), lightcol =(0.8, 0.8, 0.8), lightamb=(0.30, 0.30, 0.32))
win = DISPLAY.tkwin
shader = pi3d.Shader('uv_bump')
mapshader = pi3d.Shader("uv_elev_map")
flatsh = pi3d.Shader('uv_flat')
matsh = pi3d.Shader('mat_light')
shade2d = pi3d.Shader('2d_flat')
#========================================
# create splash screen and draw it
splash = pi3d.ImageSprite("textures/tiger_splash.jpg", shade2d, w=10, h=10, z=0.2)
splash.draw()
DISPLAY.swap_buffers()
# create environment cube
ectex = pi3d.loadECfiles('textures/ecubes/Miramar', 'miramar_256',
suffix='png')
myecube = pi3d.EnvironmentCube(size=1800.0, maptype='FACES')
myecube.set_draw_details(flatsh, ectex)
# Create elevation map
mapwidth = 2000.0
mapdepth = 2000.0
mapheight = 100.0
mountimg1 = pi3d.Texture('textures/mountains3_512.jpg')
roadimg = pi3d.Texture('textures/Roof.png')
grassimg = pi3d.Texture('textures/grass.jpg')
rockimg = pi3d.Texture('textures/rock1.jpg')
redb = pi3d.Texture('textures/red_ball.png', blend=True)
blub = pi3d.Texture('textures/blu_ball.png', blend=True)
# normal textures
tigerbmp = pi3d.Texture('models/Tiger/tiger_bump.jpg')
topbmp = pi3d.Texture('models/Tiger/top_bump.jpg')
mudbmp = pi3d.Texture('textures/mudnormal.jpg')
grassbmp = pi3d.Texture('textures/grasstile_n.jpg')
rockbmp = pi3d.Texture('textures/rocktile2.jpg')
mymap = pi3d.ElevationMap(mapfile='textures/mountainsHgt2.png',
width=mapwidth, depth=mapdepth,
height=mapheight, divx=64, divy=64, texmap='textures/roads.jpg')
mymap.set_draw_details(mapshader, [grassimg, grassbmp,
rockimg, rockbmp,
mountimg1, rockbmp,
roadimg, mudbmp], 64.0, 0.0, umult=48.0, vmult=48.0)
FOG = (0.5, 0.5, 0.5, 0.8)
mymap.set_fog(FOG, 800.0)
#Load tank
tank_body = pi3d.Model(file_string='models/Tiger/body.obj')
tank_body.set_shader(shader)
tank_body.set_normal_shine(tigerbmp)
tank_body.set_fog(FOG, 800.0)
tank_gun = pi3d.Model(file_string='models/Tiger/gun.obj', z=0.2, cz=2.5)
tank_gun.set_shader(shader)
tank_body.set_fog(FOG, 800.0)
tank_turret = pi3d.Model(file_string='models/Tiger/turret.obj')
tank_turret.set_shader(shader)
tank_turret.set_normal_shine(topbmp)
tank_turret.set_fog(FOG, 800.0)
#Make some clones of this tank
tanks = [] # will be a list of lists [body, turret, gun] to allow articulation
tanks.append([tank_body, tank_turret, tank_gun]) # tanks[0] will be the one driven by the user
for i in range(3): # try increasing to see the limitations of pi3d, python, GPU and CPU
tanks.append([tank_body.shallow_clone(), None, None])
tanks[-1][1] = tank_turret.shallow_clone()
tanks[-1][2] = tank_gun.shallow_clone()
tanks[-1][0].xyz = (random.random() * 800.0 - 400.0, 0.0, random.random() * 600.0 - 100.0)
### because these children will inherit matrix operation applied to
# their parent they don't need to be scaled
# as these are cloned the child references get duplicated if add_child()
# is used so the children attribute has to be overwritten with a new list (of one)
for t in tanks:
t[0].children = [t[1]] #turret is child of body
t[1].children = [t[2]] #gun is child of turret
#Make some missiles
missile = pi3d.Lathe(path=((0.0, 1.5), (0.1, 1.5), (0.13, 0.7),
(0.2, 0.6), (0.2, 0.01), (0.19, 0.0), (0.0, 0.0)), sides=12)
missile.set_material((1.0, 0.0, 1.0)) # purple beer bottle!
missile.set_shader(matsh) # mat_light is default if nothing specified better to be explicit
missiles = [] # will be list of missiles
for t in tanks:
missiles.append(missile.shallow_clone())
missiles[-1].x_vel = 0.0 # add velocity attributes to the instance
missiles[-1].y_vel = -5.0 # this may or may not be good practice but
missiles[-1].z_vel = 0.0 # python allows it so why not...
missiles[-1].next_tm = 0.0 # also add next fire time to missiles to restrict fire rate
missiles[-1].expl = 0.0 # also add exploding factor
#Load church
x, z = 20, -320
y = mymap.calcHeight(x,z)
church = pi3d.Model(file_string='models/AllSaints/AllSaints.obj',
sx=0.1, sy=0.1, sz=0.1, x=x, y=y, z=z)
church.set_shader(shader)
church.set_fog(FOG, 800.0)
#Load cottages
x, z = 250,-40
y = mymap.calcHeight(x,z)
cottages = pi3d.Model(file_string='models/Cottages/cottages_low.obj',
sx=0.1, sy=0.1, sz=0.1, x=x, y=y, z=z, ry=-5)
cottages.set_shader(shader)
cottages.set_fog(FOG, 800.0)
#cross-hairs in gun sight
targtex = pi3d.Texture("textures/target.png", blend=True)
target = pi3d.ImageSprite(targtex, shade2d, w=10, h=10, z=0.4)
target.set_2d_size(targtex.ix, targtex.iy, (DISPLAY.width - targtex.ix)/2,
(DISPLAY.height - targtex.iy)/2)
#telescopic gun sight
sniptex = pi3d.Texture("textures/snipermode.png", blend=True)
sniper = pi3d.ImageSprite(sniptex, shade2d, w=10, h=10, z=0.3)
scx = DISPLAY.width/sniptex.ix
scy = DISPLAY.height/sniptex.iy
if scy > scx:
scx = scy # enlarge to fill screen but use same scale for both directions
scw, sch = sniptex.ix * scx, sniptex.iy * scx
sniper.set_2d_size(scw, sch, (DISPLAY.width - scw)/2,(DISPLAY.height - sch)/2)
#corner map and dots
HW, HH = (DISPLAY.width - 200.0) / 2, (DISPLAY.height - 200.0) / 2
smmap = pi3d.ImageSprite(mountimg1, flatsh, w=200, h=200,
x=HW, y=HH, z=0.2, camera=CAM2D)
dot1 = pi3d.ImageSprite(redb, flatsh, w=10, h=10, z=0.1, camera=CAM2D)
dot2 = pi3d.ImageSprite(blub, flatsh, w=10, h=10, z=0.05, camera=CAM2D)
#key presses
mymouse = pi3d.Mouse(restrict = False)
mymouse.start()
omx, omy = mymouse.position()
#position vars
mouserot = 0.0
tilt = 0.0
avhgt = 6.0
xm, oxm = 0.0, -1.0
zm, ozm = -200.0, -1.0
ym = mymap.calcHeight(xm, zm) + avhgt
tankrot, tankpitch, tankroll = 180.0, 0.0, 0.0
turret = 0.0
elev = 0.0
ltm = 0.0 #last pitch roll check
smode = False #sniper mode
def limit_tilt(tilt):
return elev + ((tilt - 5) if tilt > 5.0 else 0.0)
win.update()
is_running = True
#try:
while DISPLAY.loop_running():
mx, my = mymouse.position()
mouserot -= (mx-omx)*0.2
tilt += (my-omy)*0.2
omx=mx
omy=my
CAMERA.reset()
smmap.draw()
for t in tanks[1:]: # all the enemy dots will be the same colour
dot2.xyz = (HW + 200.0 * t[0].x() / mapwidth, HH + 200.0 * t[0].z() / mapdepth, 0.05)
dot2.draw()
dot1.xyz = (HW + 200.0 * xm/mapwidth, HH + 200.0 * zm / mapdepth, 0.1)
dot1.draw()
# tilt can be used to prevent the view from going under the landscape!
sf = 60 - 55.0 / abs(tilt) if tilt < -1 else 5.0
xoff = sf * math.sin(math.radians(mouserot))
yoff = abs(1.25 * sf * math.sin(math.radians(tilt))) + 3.0
zoff = -sf * math.cos(math.radians(mouserot))
if tilt > -5 and smode == False: # zoom in
CAMERA.reset(lens=(1, 3000, 12.5, DISPLAY.width / DISPLAY.height))
smode = True
elif tilt <= -5 and smode == True: # zoom out
CAMERA.reset(lens=(1, 3000, 45, DISPLAY.width / DISPLAY.height))
smode = False
#adjust CAMERA position in and out so we can see our tank
CAMERA.rotate(tilt, mouserot, 0)
CAMERA.position((xm + xoff, ym + yoff + 5.0, zm + zoff))
oxm, ozm = xm, zm
mymap.draw() # Draw the landscape first as tank wheels have transparency
for i, t in enumerate(tanks):
b_x, b_y, b_z = t[0].xyz
b_rx, b_ry, b_rz = t[0].rxryrz
t_rx, t_ry, t_rz = t[1].rxryrz
g_rx, g_ry, g_rz = t[2].rxryrz
if i == 0: # this is your tank
b_x, b_z = xm, zm
ym = b_y # as y value set later and ym is used for camera
tgt_x, tgt_z = b_x, b_z # other tanks will use tanks[0] as target!
b_ry = tankrot
t_ry = 180 + turret - tankrot
g_rx = limit_tilt(tilt)
else: # these are enemies
manhatten_dist = abs(tgt_x - b_x) + abs(tgt_z - b_z) # approx so they're not too accurate
b_x -= 0.5 * math.sin(math.radians(b_ry))
b_z -= 0.5 * math.cos(math.radians(b_ry))
rot_to = math.degrees(math.atan2(tgt_x - b_x, tgt_z - b_z))
# use tweening for rotation and add an error depending on dist and i
# this remainder method avoids weirdness as rot_to goes from 0 to 360
b_ry += ((rot_to + 7.5 * i + 3000.0 / manhatten_dist - b_ry) % 360 - 180) * 0.05
t_ry = 180 + rot_to - b_ry # point straight as us!
g_rx = min(45.0, max(0.0, manhatten_dist * 0.2))
pitch, roll = mymap.pitch_roll(b_x, b_z)
b_y = mymap.ht_y + avhgt # calcHeight is now called as part of pitch_roll
b_rx = b_rx * 0.9 + pitch * 0.1
b_rz = b_rz * 0.9 + roll * 0.1
t[0].xyz = (b_x, b_y, b_z) # set position
t[0].rxryrz = (b_rx, b_ry, b_rz) # set rotations. Body
t[1].rxryrz = (t_rx, t_ry, t_rz) # turret
t[2].rxryrz = (g_rx, g_ry, g_rz) # gun
t[0].draw()
for i, m in enumerate(missiles):
m_x, m_y, m_z = m.xyz
tm = time.time()
terrain_ht = mymap.calcHeight(m_x, m_z)
if m_y < terrain_ht:
#print(i, tm, m.next_tm)
# dropped through the floor, go back to gun and get launch direction
if tm > m.next_tm: # if long enough gap, re-fire missile
# NB vectors are scaled by the parent scale factor
m.next_tm = tm + 10.0
# the gun is actually pointing -z direction. move up 2 so
but_pt, aim_vec = tanks[i][2].transform_direction([0.0, 0.0, -1.0],
[0.0, 0.0, 0.0])
m.xyz = but_pt + aim_vec * 12.0 # start from about muzzle
m.x_vel, m.y_vel, m.z_vel = aim_vec * 3.0
m.expl = 0.0 # stop exploding
m.sxsysz = (1.0, 1.0, 1.0) # return to normal size
m.set_point_size(0.0) # back to normal polygon drawing
elif m.expl < 99.5: # keep exploding until reach size or time is up
m.expl = 50 + m.expl * 0.5 # explode fast then slow
m.sxsysz = (m.expl, m.expl, m.expl)
m.set_point_size(500.0) # draw vertices as points (size at one unit of distance from camera)
m.draw()
else:
m.y_vel -= 0.03 # downward acc gravity
# the missile created by Lathe is pointing upwards so use up vector
# also have to reverse x, not sure why
m.rotate_to_direction([-m.x_vel, m.y_vel, m.z_vel], [0.0, 1.0, 0.0])
m.xyz = (m_x + m.x_vel, m_y + m.y_vel, m_z + m.z_vel)
m.draw()
# approx hit detection
for j, t in enumerate(tanks):
if i != j:
t_x, t_y, t_z = t[0].xyz
if abs(m_x - t_x) < 10 and abs(m_y - t_y) < 4 and abs(m_z - t_z) < 10:
o_x, o_y, o_z = tanks[i][0].xyz
dist = ((o_x - t_x) ** 2 + (o_y - t_y) ** 2 + (o_z - t_z) ** 2) ** 0.5
print('tank #{} hit tank #{} at a range of {:5.1f}'.format(i, j, dist))
m.xyz = m_x, terrain_ht - 0.1, m_z # stop multiple hits!
#Draw buildings
church.draw()
cottages.draw()
myecube.xyz = (xm, ym, zm)
myecube.draw() #Draw environment cube
if smode:
""" because some of the overlays have blend=True they must be done AFTER
other objects have been rendered.
"""
target.draw()
sniper.draw()
# turns player tank turret towards center of screen which will have a crosshairs
if turret + 2.0 < -mouserot:
turret += 2.0
if turret - 2.0 > -mouserot:
turret -= 2.0
try:
win.update()
except Exception as e:
LOGGER.info("bye,bye2 %s", e)
DISPLAY.destroy()
try:
win.destroy()
except:
pass
mymouse.stop()
exit()
if win.ev == "resized":
LOGGER.info("resized")
DISPLAY.resize(win.winx, win.winy, win.width, win.height-bord)
CAMERA.reset((DISPLAY.near, DISPLAY.far, DISPLAY.fov,
DISPLAY.width / float(DISPLAY.height)))
win.resized = False
if win.ev == "key":
if win.key == "w":
xm -= math.sin(math.radians(tankrot)) * 2
zm -= math.cos(math.radians(tankrot)) * 2
elif win.key == "s":
xm += math.sin(math.radians(tankrot)) * 2
zm += math.cos(math.radians(tankrot)) * 2
elif win.key == "a":
tankrot -= 2
elif win.key == "d":
tankrot += 2
elif win.key == "f": # fire on space
missiles[0].positionY(-100.0)
missiles[0].next_tm = 0.0
elif win.key == "p":
pi3d.screenshot("TigerTank.jpg")
elif win.key == "u":
elev += 5
elif win.key == "j":
elev -= 5
elif win.key == "Escape":
try:
LOGGER.info("bye,bye1")
DISPLAY.destroy()
try:
win.destroy()
except:
pass
mymouse.stop()
exit()
except:
pass
if win.ev=="drag" or win.ev=="click" or win.ev=="wheel":
xm -= math.sin(math.radians(tankrot)) * 2
zm -= math.cos(math.radians(tankrot)) * 2
ym = (mymap.calcHeight(xm, zm) + avhgt)
else:
win.ev="" #clear the event so it doesn't repeat
'''
except Exception as e:
LOGGER.info("bye,bye3 %s", e)
DISPLAY.destroy()
try:
win.destroy()
except:
pass
mymouse.stop()
exit()'''