-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsquares.cpp
287 lines (255 loc) · 9.63 KB
/
squares.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "tesseract/baseapi.h"
#include "trie/trie.h"
#include "trie/trienode.h"
#include "graph/graph.h"
#include <iostream>
#include <fstream>
#include <utility>
#include <stack>
#include <set>
#include <math.h>
#include <string.h>
#include <locale.h>
static const char* window_name = "haha";
static const int columns = 4;
static const int rows = 4;
static const std::vector<std::pair<int, int>> adjacent =
{{-1, -1}, {-1, 0}, {-1, 1},
{0, -1},/*{0, 0},*/{0, 1},
{1, -1}, {1, 0}, {1, 1}};
std::vector<std::vector<cv::Point2f>> findSquares(cv::Mat& image)
{
std::vector<std::vector<cv::Point2f>> squares;
cv::Mat pyr, timg;
// down-scale and upscale the image to filter out the noise
cv::pyrDown(image, pyr, cv::Size(image.cols/2, image.rows/2));
cv::pyrUp(pyr, timg, image.size());
// use only one channel from an image
int from_to[] = {0, 0};
cv::Mat single_channel(image.size(), CV_8U);
cv::mixChannels(&timg, 1, &single_channel, 1, from_to, 1);
// detect edges using canny algorithm
cv::Mat bw;
cv::Canny(single_channel, bw, 100, 200, 3);
// dilate the image in order to remove possible gaps on edges
cv::dilate(bw, bw, cv::Mat(), cv::Point2f(-1, -1));
// extract contours from the image
std::vector<std::vector<cv::Point>> contours;
cv::findContours(bw, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
std::vector<cv::Point> approx;
for (auto contour : contours)
{
// approximate contour with accuracy proportional
// to the contour perimeter
cv::approxPolyDP(cv::Mat(contour), approx,
cv::arcLength(cv::Mat(contour), true) * 0.03, true);
// squares we are looking for have four vertices
// have area bigger than 0.005 part of total image area
// and are convex
if (approx.size() == 4 && std::fabs(cv::contourArea(contour)) > image.size().area() * 0.0001 &&
cv::isContourConvex(approx))
{
// also, bounding rectangle's dimensions must be square-like
cv::Rect bounding_rect = cv::boundingRect(cv::Mat(approx));
if ((float)bounding_rect.height < (float)bounding_rect.width * 1.2 &&
(float)bounding_rect.height > (float)bounding_rect.width * 0.8)
{
std::vector<cv::Point2f> result;
cv::Mat(approx).copyTo(result);
squares.push_back(result);
}
}
}
return squares;
}
// function was taken from http://opencv-code.com/tutorials/automatic-perspective-correction-for-quadrilateral-objects/
void sortCorners(std::vector<cv::Point2f>& corners, cv::Point centre)
{
std::vector<cv::Point2f> top, bottom;
for (auto corner : corners)
if (corner.y < centre.y) top.push_back(corner);
else bottom.push_back(corner);
cv::Point2f top_left = top[0].x > top[1].x ? top[1] : top[0];
cv::Point2f top_right = top[0].x > top[1].x ? top[0] : top[1];
cv::Point2f bottom_left = bottom[0].x > bottom[1].x ? bottom[1] : bottom[0];
cv::Point2f bottom_right = bottom[0].x > bottom[1].x ? bottom[0] : bottom[1];
corners.clear();
corners.push_back(top_left);
corners.push_back(top_right);
corners.push_back(bottom_right);
corners.push_back(bottom_left);
}
std::vector<std::vector<cv::Mat>> cutSquares(cv::Mat image, std::vector<std::vector<cv::Point2f>> squares)
{
if (squares.size() != 16) return std::vector<std::vector<cv::Mat>>();
// find mass centres and sort square's corners
std::vector<cv::Point2f> centres;
std::vector<std::pair<std::pair<int, int>, int>> sorted;
for (int i = 0; i < squares.size(); ++i)
{
cv::Point2f centre(0, 0);
for (auto p : squares[i]) centre += p;
centre *= 1.0 / squares[i].size();
sortCorners(squares[i], centre);
centres.push_back(centre);
sorted.push_back(std::make_pair(std::make_pair(centre.x, centre.y), i));
}
// sort squares
sort(sorted.begin(), sorted.end());
std::vector<std::vector<cv::Mat>> table(rows, std::vector<cv::Mat>(columns));
for (int i = 0; i < rows; ++i)
for (int j = 0; j < columns; ++j)
{
int index = sorted[i * columns + j].second;
int square_size = std::min(image.size().height, image.size().width) / 4;
cv::Mat result = cv::Mat(square_size, square_size, CV_8UC3);
std::vector<cv::Point2f> result_points;
result_points.push_back(cv::Point2f(0, 0));
result_points.push_back(cv::Point2f(result.cols, 0));
result_points.push_back(cv::Point2f(result.cols, result.rows));
result_points.push_back(cv::Point2f(0, result.rows));
cv::Mat transformation_matrix =
cv::getPerspectiveTransform(squares[index], result_points);
cv::warpPerspective(image, result, transformation_matrix, result.size());
table[i][j] = result;
}
return table;
}
std::string extractLetters(cv::Mat square)
{
cv::Mat pyr, timg;
// down-scale and upscale the image to filter out the noise
cv::pyrDown(square, pyr, cv::Size(square.cols/2, square.rows/2));
cv::pyrUp(pyr, timg, square.size());
timg = timg(cv::Rect(timg.size().width * 0.05, timg.size().height * 0.05,
timg.size().width * 0.9, timg.size().height * 0.9));
int from_to[] = {2, 0};
cv::Mat single_channel(timg.size(), CV_8U);
cv::mixChannels(&timg, 1, &single_channel, 1, from_to, 1);
cv::threshold(single_channel, single_channel, 140, 255, cv::THRESH_BINARY_INV);
cv::Mat bw;
cv::Canny(single_channel, bw, 0, 50, 3);
std::vector<std::vector<cv::Point>> contours;
cv::findContours(bw, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
std::vector<cv::Point> contour;
for (auto cont : contours)
{
cv::Rect bounding_rect = cv::boundingRect(cv::Mat(cont));
if (bounding_rect.height < square.size().height * 0.9 &&
bounding_rect.height > square.size().height * 0.3)
for (auto point : cont)
contour.push_back(point);
}
if (contour.empty()) return "";
cv::Rect bounds = cv::boundingRect(cv::Mat(contour));
cv::Rect new_bounds;
new_bounds.x = 0;
new_bounds.width = timg.size().width;
new_bounds.y = std::max(bounds.y - bounds.height * 0.1, 0.0);
new_bounds.height = std::min(bounds.height + bounds.height * 0.2,
(double)timg.size().height - new_bounds.y);
cv::Mat letters = timg(new_bounds).clone();
cv::Mat letters_single_channel(letters.size(), CV_8U);
cv::mixChannels(&letters, 1, &letters_single_channel, 1, from_to, 1);
cv::threshold(letters_single_channel, letters_single_channel,
180, 255, cv::THRESH_BINARY_INV);
cv::rectangle(letters_single_channel, cv::Point(0,0),
cv::Point(bounds.x, timg.size().height), cv::Scalar(255,255,255), CV_FILLED);
cv::rectangle(letters_single_channel, cv::Point(bounds.x+bounds.width,0),
cv::Point(timg.size().width, timg.size().height), cv::Scalar(255,255,255), CV_FILLED);
tesseract::TessBaseAPI tess;
setlocale (LC_NUMERIC, "C");
tess.Init(NULL, "eng");
tess.SetVariable("tessedit_char_whitelist", "ABCDEFGHIJKLMNOPQRSTUVWXYZ/-");
tess.SetImage((uchar*)letters_single_channel.data,
letters_single_channel.cols, letters_single_channel.rows, 1,
letters_single_channel.cols);
std::string str;
char* out = tess.GetUTF8Text();
for (int i = 0; out[i] != '\0'; ++i)
if (isalpha(out[i]) || out[i] == '/')
str.push_back(out[i]);
if (str == "" && bounds.width < bounds.height * 0.3)
str = "I";
return str;
}
void dfs(Graph& graph, int index, Trie& trie, std::string str, std::vector<bool>& visited, std::set<std::string>& results)
{
if (trie.contains(str) && str.length() >= 3) results.insert(str);
for (auto ind : graph.vertices[index].edges)
{
if (!visited[ind] &&
trie.getNode(str + graph.vertices[ind].content) != NULL)
{
visited[ind] = true;
dfs(graph, ind, trie, str + graph.vertices[ind].content, visited, results);
visited[ind] = false;
}
}
}
void getWords(std::vector<std::vector<std::string>>& table, Trie& trie)
{
Graph graph(table);
std::set<std::string> results;
for (int i = 0; i < graph.vertices.size(); ++i)
{
std::string str = graph.vertices[i].content;
std::vector<bool> visited(graph.vertices.size(), false);
visited[i] = true;
dfs(graph, i, trie, str, visited, results);
}
std::vector<std::string> sorted(results.begin(), results.end());
std::sort(sorted.begin(), sorted.end(), [](std::string a, std::string b)
{ return (a.length() > b.length()); });
for (auto str : sorted)
std::clog << str << " ";
}
int main()
{
// Filling the wordlist
Trie trie;
std::ifstream wordlist("./wordlist/CROSSWD.TXT");
std::string line;
while (std::getline(wordlist, line)) trie.add(line);
// Launching camera
cv::VideoCapture cap(0);
if (!cap.isOpened())
{
std::clog << "Could not open webcam" << std::endl;
return -1;
}
// Extracting letters
cv::Mat frame = cv::imread("haha.png", 1);
std::vector<std::vector<std::string>> table(rows,
std::vector<std::string>(columns));
while(true)
{
if (cv::waitKey(30) >= 0)
{
cv::imwrite("haha.png", frame);
break;
}
cap >> frame;
cv::namedWindow(window_name, 1);
std::vector<std::vector<cv::Point2f>> squares = findSquares(frame);
std::vector<std::vector<cv::Mat>> images_table = cutSquares(frame, squares);
if (images_table.empty())
{
cv::imshow(window_name, frame);
continue;
}
for (int i = 0; i < images_table.size(); ++i)
for (int j = 0; j < images_table[i].size(); ++j)
{
table[i][j] = extractLetters(images_table[i][j]);
cv::putText(frame, table[i][j], cv::Point(50*(i+1), 50*(j+1)), cv::FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0));
}
cv::imshow(window_name, frame);
}
// Processing the table
getWords(table, trie);
return 0;
}