-
Notifications
You must be signed in to change notification settings - Fork 5
/
caption.py
345 lines (230 loc) · 11.4 KB
/
caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import matplotlib.pyplot as plt
import random
import json
from scipy import ndimage
import numpy as np
from copy import deepcopy
from PIL import Image
import IPython.display
from math import floor
import torch
import torch.nn as nn # neural networks
import torch.nn.functional as F # layers, activations and more
import torch.optim as optim
import torchvision.transforms.functional as TF
import torchvision
from torchvision import datasets, models, transforms
import string
is_cuda = torch.cuda.is_available()
#is_cuda
if(is_cuda):
USE_GPU = True
else:
USE_GPU = False
ENDWORD = '<END>'
STARTWORD = '<START>'
PADWORD = '<PAD>'
HEIGHT = 299
WIDTH = 299
INPUT_EMBEDDING = 300
HIDDEN_SIZE = 300
OUTPUT_EMBEDDING = 300
CAPTION_FILE = 'caption_datasets/dataset_flickr8k.json'
IMAGE_DIR = 'Flicker8k_Dataset/'
inception =models.inception_v3(pretrained=True)
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
num_ftrs = inception.fc.in_features
num_ftrs
set_parameter_requires_grad(inception, True)
num_ftrs = inception.fc.in_features
inception.fc = nn.Linear(num_ftrs,INPUT_EMBEDDING)
inception.load_state_dict(torch.load('models/inception_epochs_40.pth'))
class Flickr8KImageCaptionDataset:
def __init__(self):
all_data = json.load(open('caption_datasets/dataset_flickr8k.json', 'r'))
all_data=all_data['images']
self.training_data = []
self.test_data = []
self.w2i = {ENDWORD: 0, STARTWORD: 1}
self.word_frequency = {ENDWORD: 0, STARTWORD: 0}
self.i2w = {0: ENDWORD, 1: STARTWORD}
self.tokens = 2 #END is default
self.batch_index = 0
for data in all_data:
if(data['split']=='train'):
self.training_data.append(data)
else:
self.test_data.append(data)
for sentence in data['sentences']:
for token in sentence['tokens']:
if(token not in self.w2i.keys()):
self.w2i[token] = self.tokens
self.i2w[self.tokens] = token
self.tokens +=1
self.word_frequency[token] = 1
else:
self.word_frequency[token] += 1
def image_to_tensor(self,filename):
image = Image.open(filename)
image = TF.resize(img=image, size=(HEIGHT,WIDTH))
image = TF.to_tensor(pic=image)
image = TF.normalize(image, mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
return torch.unsqueeze(image,0)
def return_train_batch(self): #size of 1 always
#np.random.shuffle(self.training_data)
for index in range(len(self.training_data)):
#index = np.random.randint(len(self.training_data))
sentence_index = np.random.randint(len(self.training_data[index]['sentences']))
output_sentence_tokens = deepcopy(self.training_data[index]['sentences'][sentence_index]['tokens'])
output_sentence_tokens.append(ENDWORD) #corresponds to end word
image = self.image_to_tensor('Flicker8k_Dataset/'+self.training_data[index]['filename'])
yield image, list(map(lambda x: self.w2i[x], output_sentence_tokens)), output_sentence_tokens, index
def convert_tensor_to_word(self, output_tensor):
output = F.log_softmax(output_tensor.detach().squeeze(), dim=0).numpy()
return self.i2w[np.argmax(output)]
def convert_sentence_to_tokens(self, sentence):
tokens = sentence.split(" ")
converted_tokens= list(map(lambda x: self.w2i[x], tokens))
converted_tokens.append(self.w2i[ENDWORD])
return converted_tokens
def caption_image_greedy(self, net, image_filename, max_words=15): #non beam search, no temperature implemented
net.eval()
inception.eval()
image_tensor = self.image_to_tensor(image_filename)
hidden=None
embedding=None
words = []
input_token = STARTWORD
input_tensor = torch.tensor(self.w2i[input_token]).type(torch.LongTensor)
for i in range(max_words):
if(i==0):
out, hidden=net(input_tensor, hidden=image_tensor, process_image=True)
else:
out, hidden=net(input_tensor, hidden)
word = self.convert_tensor_to_word(out)
input_token = self.w2i[word]
input_tensor = torch.tensor(input_token).type(torch.LongTensor)
if(word==ENDWORD):
break
else:
words.append(word)
return ' '.join(words)
def forward_beam(self, net, hidden, process_image, partial_sentences, sentences, topn_words=5, max_sentences=10):
max_words = 50
hidden_index = {}
while(sentences<max_sentences):
#print("Sentences: ",sentences)
new_partial_sentences = []
new_partial_sentences_logp = []
new_partial_avg_logp= []
if(len(partial_sentences[-1][0])>max_words):
break
for partial_sentence in partial_sentences:
input_token = partial_sentence[0][-1]
input_tensor = torch.tensor(self.w2i[input_token]).type(torch.FloatTensor)
if(partial_sentence[0][-1]==STARTWORD):
out, hidden=net(input_tensor, hidden, process_image=True)
else:
out, hidden=net(input_tensor, torch.tensor(hidden_index[input_token]))
#take first topn words and add as children to root
out = F.log_softmax(out.detach().squeeze(), dim=0).numpy()
out_indexes = np.argsort(out)[::-1][:topn_words]
for out_index in out_indexes:
if(self.i2w[out_index]==ENDWORD):
sentences=sentences+1
else:
total_logp = float(out[out_index]) + partial_sentence[1]
new_partial_sentences_logp.append(total_logp)
new_partial_sentences.append([np.concatenate((partial_sentence[0], [self.i2w[out_index]])),total_logp])
len_words = len(new_partial_sentences[-1][0])
new_partial_avg_logp.append(total_logp/len_words)
#print(self.i2w[out_index])
hidden_index[self.i2w[out_index]] = deepcopy(hidden.detach().numpy())
#select topn partial sentences
top_indexes = np.argsort(new_partial_sentences_logp)[::-1][:topn_words]
new_partial_sentences = np.array(new_partial_sentences)[top_indexes]
#print("New partial sentences (topn):", new_partial_sentences)
partial_sentences = new_partial_sentences
return partial_sentences
def caption_image_beam_search(self, net, image_filename, topn_words=10, max_sentences=10):
net.eval()
inception.eval()
image_tensor = self.image_to_tensor(image_filename)
hidden=None
embedding=None
words = []
sentences = 0
partial_sentences = [[[STARTWORD], 0.0]]
#root_id = hash(input_token) #for start word
#nodes = {}
#nodes[root_id] = Node(root_id, [STARTWORD, 0], None)
partial_sentences = self.forward_beam(net, image_tensor, True, partial_sentences, sentences, topn_words, max_sentences)
logp = []
joined_sentences = []
for partial_sentence in partial_sentences:
joined_sentences.append([' '.join(partial_sentence[0][1:]),partial_sentence[1]])
return joined_sentences
def print_beam_caption(self, net, train_filename,num_captions=0):
beam_sentences = f.caption_image_beam_search(net,train_filename)
if(num_captions==0):
num_captions=len(beam_sentences)
for sentence in beam_sentences[:num_captions]:
print(sentence[0]+" [",sentence[1], "]")
class IC_V6(nn.Module):
#V2: Fed image vector directly as hidden and fed words generated as iputs back to LSTM
#V3: Added an embedding layer between words input and GRU/LSTM
def __init__(self, token_dict_size):
super(IC_V6, self).__init__()
#Input is an image of height 500, and width 500
self.embedding_size = INPUT_EMBEDDING
self.hidden_state_size = HIDDEN_SIZE
self.token_dict_size = token_dict_size
self.output_size = OUTPUT_EMBEDDING
self.batchnorm = nn.BatchNorm1d(self.embedding_size)
self.input_embedding = nn.Embedding(self.token_dict_size, self.embedding_size)
self.embedding_dropout = nn.Dropout(p=0.22)
self.gru_layers = 3
self.gru = nn.GRU(input_size=self.embedding_size, hidden_size=self.hidden_state_size, num_layers=self.gru_layers, dropout=0.22)
self.linear = nn.Linear(self.hidden_state_size, self.output_size)
self.out = nn.Linear(self.output_size, token_dict_size)
def forward(self, input_tokens, hidden, process_image=False, use_inception=True):
if(USE_GPU):
device = torch.device('cuda')
else:
device = torch.device('cpu')
if(process_image):
if(use_inception):
inp=self.embedding_dropout(inception(hidden))
else:
inp=hidden
#inp=self.batchnorm(inp)
hidden=torch.zeros((self.gru_layers,1, self.hidden_state_size))
else:
inp=self.embedding_dropout(self.input_embedding(input_tokens.view(1).type(torch.LongTensor).to(device)))
#inp=self.batchnorm(inp)
hidden = hidden.view(self.gru_layers,1,-1)
inp = inp.view(1,1,-1)
out, hidden = self.gru(inp, hidden)
out = self.out(self.linear(out))
return out, hidden
f = Flickr8KImageCaptionDataset()
net = IC_V6(f.tokens)
net.load_state_dict(torch.load('models/epochs_40_loss_2_841_v6.pth'))
#net.eval()
train_filename = '/Users/prasadgujar16/Desktop/searching/my-images/a.jpg'
print("Greedy caption:", f.caption_image_greedy(net,train_filename))
ok = f.caption_image_greedy(net,train_filename)
file = open('caption.txt', 'w')
file.write(ok)
file.close()
#print("")
#print("Beam caption:")
#f.print_beam_caption(net, train_filename, 3)
#pil_im = Image.open(train_filename, 'r')
#plt.figure()
#plt.imshow(np.asarray(pil_im))
#plt.show()