-
Notifications
You must be signed in to change notification settings - Fork 0
/
Graph_Algo.java
131 lines (106 loc) · 3.03 KB
/
Graph_Algo.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
/**
*
* @author pulkit4tech
*/
public class Graph_Algo implements Runnable {
BufferedReader c;
PrintWriter pout;
// static long mod = 1000000007;
public void run() {
try {
c = new BufferedReader(new InputStreamReader(System.in));
pout = new PrintWriter(System.out, true);
solve();
pout.close();
} catch (Exception e) {
pout.close();
e.printStackTrace();
System.exit(1);
}
}
public static void main(String[] args) throws Exception {
new Thread(new Graph_Algo()).start();
}
void solve() throws Exception {
// For Referenced (GeekforGeek Solution)
union_find();
}
void union_find(){
/* Let us create following graph
0
| \
| \
1-----2 */
int V = 3, E = 3;
Graph graph = new Graph(V, E);
// add edge 0-1
graph.edge[0].src = 0;
graph.edge[0].dest = 1;
// add edge 1-2
graph.edge[1].src = 1;
graph.edge[1].dest = 2;
// add edge 0-2
graph.edge[2].src = 0;
graph.edge[2].dest = 2;
if (graph.isCycle(graph)==1)
System.out.println( "graph contains cycle" );
else
System.out.println( "graph doesn't contain cycle" );
}
class Graph {
int V, E; // V-> no. of vertices & E->no.of edges
Edge edge[]; // /collection of all edges
class Edge
{
int src, dest;
};
// Creates a graph with V vertices and E edges
Graph(int v,int e)
{
V = v;
E = e;
edge = new Edge[E];
for (int i=0; i<e; ++i)
edge[i] = new Edge();
}
// A utility function to find the subset of an element i
int find(int parent[], int i)
{
if (parent[i] == -1)
return i;
return find(parent, parent[i]);
}
// A utility function to do union of two subsets
void Union(int parent[], int x, int y)
{
int xset = find(parent, x);
int yset = find(parent, y);
parent[xset] = yset;
}
// The main function to check whether a given graph
// contains cycle or not
int isCycle( Graph graph)
{
// Allocate memory for creating V subsets
int parent[] = new int[graph.V];
// Initialize all subsets as single element sets
for (int i=0; i<graph.V; ++i)
parent[i]=-1;
// Iterate through all edges of graph, find subset of both
// vertices of every edge, if both subsets are same, then
// there is cycle in graph.
for (int i = 0; i < graph.E; ++i)
{
int x = graph.find(parent, graph.edge[i].src);
int y = graph.find(parent, graph.edge[i].dest);
if (x == y)
return 1;
graph.Union(parent, x, y);
}
return 0;
}
}
}