-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathmnist_lightning.py
184 lines (153 loc) · 5.77 KB
/
mnist_lightning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Runs MNIST training with differential privacy.
This example demonstrates how to use Opacus with PyTorch Lightning.
To start training:
$ python mnist_lightning.py fit
More information about setting training parameters:
$ python mnist_lightning.py fit --help
To see logs:
$ tensorboard --logdir=lightning_logs/
"""
import os
import warnings
import pytorch_lightning as pl
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchmetrics
from opacus import PrivacyEngine
from opacus.data_loader import DPDataLoader
from opacus.lightning import DPLightningDataModule
from pl_bolts.datamodules import MNISTDataModule
from pytorch_lightning.utilities.cli import LightningCLI
warnings.filterwarnings("ignore")
class LitSampleConvNetClassifier(pl.LightningModule):
def __init__(
self,
lr: float = 0.1,
enable_dp: bool = True,
delta: float = 1e-5,
noise_multiplier: float = 1.0,
max_grad_norm: float = 1.0,
):
"""A simple conv-net for classifying MNIST with differential privacy training
Args:
lr: Learning rate
enable_dp: Enables training with privacy guarantees using Opacus (if True), vanilla SGD otherwise
delta: Target delta for which (eps, delta)-DP is computed
noise_multiplier: Noise multiplier
max_grad_norm: Clip per-sample gradients to this norm
"""
super().__init__()
# Hyper-parameters
self.lr = lr
# Parameters
self.conv1 = nn.Conv2d(1, 16, 8, 2, padding=3)
self.conv2 = nn.Conv2d(16, 32, 4, 2)
self.fc1 = nn.Linear(32 * 4 * 4, 32)
self.fc2 = nn.Linear(32, 10)
# Metrics
self.test_accuracy = torchmetrics.Accuracy()
# Differential privacy
self.enable_dp = enable_dp
self.delta = delta
self.noise_multiplier = noise_multiplier
self.max_grad_norm = max_grad_norm
if self.enable_dp:
self.privacy_engine = PrivacyEngine()
def forward(self, x):
# x of shape [B, 1, 28, 28]
x = F.relu(self.conv1(x)) # -> [B, 16, 14, 14]
x = F.max_pool2d(x, 2, 1) # -> [B, 16, 13, 13]
x = F.relu(self.conv2(x)) # -> [B, 32, 5, 5]
x = F.max_pool2d(x, 2, 1) # -> [B, 32, 4, 4]
x = x.view(-1, 32 * 4 * 4) # -> [B, 512]
x = F.relu(self.fc1(x)) # -> [B, 32]
x = self.fc2(x) # -> [B, 10]
return x
def configure_optimizers(self):
optimizer = optim.SGD(self.parameters(), lr=self.lr, momentum=0)
if self.enable_dp:
# get training dataloader
self.trainer.fit_loop.setup_data()
data_loader = self.trainer.train_dataloader
# transform (model, optimizer, dataloader) to DP-versions
if hasattr(self, "dp"):
self.dp["model"].remove_hooks()
dp_model, optimizer, dataloader = self.privacy_engine.make_private(
module=self,
optimizer=optimizer,
data_loader=data_loader,
noise_multiplier=self.noise_multiplier,
max_grad_norm=self.max_grad_norm,
poisson_sampling=isinstance(data_loader, DPDataLoader),
)
self.dp = {"model": dp_model}
return optimizer
def training_step(self, batch, batch_idx):
data, target = batch
output = self(data)
loss = F.cross_entropy(output, target)
self.log("train_loss", loss, on_step=False, on_epoch=True, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
data, target = batch
output = self(data)
loss = F.cross_entropy(output, target)
self.test_accuracy(output, target)
self.log("test_loss", loss, on_step=False, on_epoch=True, prog_bar=True)
self.log("test_accuracy", self.test_accuracy, on_step=False, on_epoch=True)
return loss
def on_train_epoch_end(self) -> None:
# Logging privacy spent: (epsilon, delta)
epsilon = self.privacy_engine.get_epsilon(self.delta)
self.log("epsilon", epsilon, on_epoch=True, prog_bar=True)
def main():
"""
Using vanilla Lightning API to train/test
"""
data = MNISTDataModule(batch_size=64)
model = LitSampleConvNetClassifier()
dp_data = DPLightningDataModule(data)
trainer = pl.Trainer(
max_epochs=10,
enable_model_summary=False,
)
trainer.fit(model, dp_data)
trainer.test(model, data)
trainer.test(model, dp_data) # identical
def cli_main():
"""
Using LightningCLI to automatically setup argparse
"""
cli = LightningCLI(
LitSampleConvNetClassifier,
MNISTDataModule,
save_config_overwrite=True,
trainer_defaults={
"max_epochs": 10,
"enable_model_summary": False,
},
description="Training MNIST classifier with Opacus and PyTorch Lightning",
)
cli.trainer.fit(cli.model, datamodule=cli.datamodule)
cli.trainer.test(ckpt_path="best", datamodule=cli.datamodule)
if __name__ == "__main__":
if os.environ.get("LIGHTNING_VANILLA") == "true":
main()
else:
cli_main()