You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When trying to run distributed/run_dist_inference.sh . It has below error.
[rank0]:[rank0]: model = _load_model(builder_args)
[rank0]:[rank0]: File "/scratch/grace/torchchat/torchchat/cli/builder.py", line 473, in _load_model
[rank0]:[rank0]: model = _maybe_parellelize_model(model, builder_args, world_mesh, parallel_dims)
[rank0]:[rank0]: File "/scratch/grace/torchchat/torchchat/cli/builder.py", line 460, in _maybe_parellelize_model
[rank0]:[rank0]: parallelize_llama(model, world_mesh, parallel_dims)
[rank0]:[rank0]: File "/scratch/grace/torchchat/distributed/parallelize_llama.py", line 124, in parallelize_llama
[rank0]:[rank0]: model = apply_tp(model, world_mesh)
[rank0]:[rank0]: File "/scratch/grace/torchchat/distributed/parallelize_llama.py", line 69, in apply_tp
[rank0]:[rank0]: for transformer_block in model.layers:
[rank0]:[rank0]: File "/opt/conda/envs/ptca/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1729, in getattr
[rank0]:[rank0]: raise AttributeError(f"'{type(self).name}' object has no attribute '{name}'")
[rank0]:[rank0]: AttributeError: 'TextOnlyModel' object has no attribute 'layers'
Versions
PyTorch version: 2.4.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.0
Libc version: glibc-2.31
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1045-azure-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe
Nvidia driver version: 535.86.10
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7V13 64-Core Processor
Stepping: 1
CPU MHz: 2445.443
BogoMIPS: 4890.88
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB
L1i cache: 3 MiB
L2 cache: 48 MiB
L3 cache: 384 MiB
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm
🐛 Describe the bug
When trying to run distributed/run_dist_inference.sh . It has below error.
[rank0]:[rank0]: model = _load_model(builder_args)
[rank0]:[rank0]: File "/scratch/grace/torchchat/torchchat/cli/builder.py", line 473, in _load_model
[rank0]:[rank0]: model = _maybe_parellelize_model(model, builder_args, world_mesh, parallel_dims)
[rank0]:[rank0]: File "/scratch/grace/torchchat/torchchat/cli/builder.py", line 460, in _maybe_parellelize_model
[rank0]:[rank0]: parallelize_llama(model, world_mesh, parallel_dims)
[rank0]:[rank0]: File "/scratch/grace/torchchat/distributed/parallelize_llama.py", line 124, in parallelize_llama
[rank0]:[rank0]: model = apply_tp(model, world_mesh)
[rank0]:[rank0]: File "/scratch/grace/torchchat/distributed/parallelize_llama.py", line 69, in apply_tp
[rank0]:[rank0]: for transformer_block in model.layers:
[rank0]:[rank0]: File "/opt/conda/envs/ptca/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1729, in getattr
[rank0]:[rank0]: raise AttributeError(f"'{type(self).name}' object has no attribute '{name}'")
[rank0]:[rank0]: AttributeError: 'TextOnlyModel' object has no attribute 'layers'
Versions
PyTorch version: 2.4.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.0
Libc version: glibc-2.31
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1045-azure-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe
Nvidia driver version: 535.86.10
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7V13 64-Core Processor
Stepping: 1
CPU MHz: 2445.443
BogoMIPS: 4890.88
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB
L1i cache: 3 MiB
L2 cache: 48 MiB
L3 cache: 384 MiB
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm
Versions of relevant libraries:
[pip3] numpy==1.23.5
[pip3] onnx==1.16.2
[pip3] onnxruntime-training==1.18.0
[pip3] pytorch-lightning==1.9.5
[pip3] torch==2.4.1
[pip3] torch-nebula==0.16.13
[pip3] torch-ort==1.18.0
[pip3] torch-tb-profiler==0.4.3
[pip3] torchao==0.5.0
[pip3] torchaudio==2.4.1
[pip3] torchdata==0.7.1
[pip3] torchmetrics==1.2.0
[pip3] torchsnapshot==0.1.0
[pip3] torchtune==0.3.0
[pip3] torchvision==0.19.1
[pip3] triton==3.0.0
[conda] magma-cuda121 2.6.1 1 pytorch
[conda] mkl 2022.2.1 pypi_0 pypi
[conda] mkl-include 2022.2.1 pypi_0 pypi
[conda] numpy 1.23.5 pypi_0 pypi
[conda] pytorch-lightning 1.9.5 pypi_0 pypi
[conda] torch 2.4.1 pypi_0 pypi
[conda] torch-nebula 0.16.13 pypi_0 pypi
[conda] torch-ort 1.18.0 pypi_0 pypi
[conda] torch-tb-profiler 0.4.3 pypi_0 pypi
[conda] torchao 0.5.0 pypi_0 pypi
[conda] torchaudio 2.4.1 pypi_0 pypi
[conda] torchdata 0.7.1 pypi_0 pypi
[conda] torchmetrics 1.2.0 pypi_0 pypi
[conda] torchsnapshot 0.1.0 pypi_0 pypi
[conda] torchtune 0.3.0 pypi_0 pypi
[conda] torchvision 0.19.1 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
The text was updated successfully, but these errors were encountered: