-
Notifications
You must be signed in to change notification settings - Fork 22
144 lines (135 loc) · 5.97 KB
/
linux_cuda_wheel.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
name: Build and test Linux CUDA wheels
on:
pull_request:
push:
branches:
- nightly
- main
- release/*
tags:
- v[0-9]+.[0-9]+.[0-9]+-rc[0-9]+
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
permissions:
id-token: write
contents: write
defaults:
run:
shell: bash -l -eo pipefail {0}
jobs:
generate-matrix:
uses: pytorch/test-infra/.github/workflows/generate_binary_build_matrix.yml@main
with:
package-type: wheel
os: linux
test-infra-repository: pytorch/test-infra
test-infra-ref: main
with-cpu: disable
with-xpu: disable
with-rocm: disable
with-cuda: enable
build-python-only: "disable"
build:
needs: generate-matrix
strategy:
fail-fast: false
name: Build and Upload wheel
uses: pytorch/test-infra/.github/workflows/build_wheels_linux.yml@main
with:
repository: pytorch/torchcodec
ref: ""
test-infra-repository: pytorch/test-infra
test-infra-ref: main
build-matrix: ${{ needs.generate-matrix.outputs.matrix }}
post-script: packaging/post_build_script.sh
smoke-test-script: packaging/fake_smoke_test.py
package-name: torchcodec
trigger-event: ${{ github.event_name }}
build-platform: "python-build-package"
build-command: "BUILD_AGAINST_ALL_FFMPEG_FROM_S3=1 ENABLE_CUDA=1 python -m build --wheel -vvv --no-isolation"
install-and-test:
runs-on: linux.4xlarge.nvidia.gpu
strategy:
fail-fast: false
matrix:
# 3.9 corresponds to the minimum python version for which we build
# the wheel unless the label cliflow/binaries/all is present in the
# PR.
# For the actual release we should add that label and change this to
# include more python versions.
python-version: ['3.9']
cuda-version: ['11.8', '12.1', '12.4']
ffmpeg-version-for-tests: ['5', '6', '7']
container:
image: "pytorch/manylinux-builder:cuda${{ matrix.cuda-version }}"
options: "--gpus all -e NVIDIA_DRIVER_CAPABILITIES=video,compute,utility"
if: ${{ always() }}
needs: build
steps:
- name: Setup env vars
run: |
cuda_version_without_periods=$(echo "${{ matrix.cuda-version }}" | sed 's/\.//g')
echo cuda_version_without_periods=${cuda_version_without_periods} >> $GITHUB_ENV
- uses: actions/download-artifact@v3
with:
name: pytorch_torchcodec__3.9_cu${{ env.cuda_version_without_periods }}_x86_64
path: pytorch/torchcodec/dist/
- name: Setup miniconda using test-infra
uses: ahmadsharif1/test-infra/.github/actions/setup-miniconda@14bc3c29f88d13b0237ab4ddf00aa409e45ade40
with:
python-version: ${{ matrix.python-version }}
default-packages: "conda-forge::ffmpeg=${{ matrix.ffmpeg-version-for-tests }}"
- name: Check env
run: |
${CONDA_RUN} env
${CONDA_RUN} conda info
${CONDA_RUN} nvidia-smi
- name: Update pip
run: ${CONDA_RUN} python -m pip install --upgrade pip
- name: Install PyTorch
run: |
${CONDA_RUN} python -m pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu${{ env.cuda_version_without_periods }}
${CONDA_RUN} python -c 'import torch; print(f"{torch.__version__}"); print(f"{torch.__file__}"); print(f"{torch.cuda.is_available()=}")'
- name: Install torchcodec from the wheel
run: |
wheel_path=`find pytorch/torchcodec/dist -type f -name "*.whl"`
echo Installing $wheel_path
${CONDA_RUN} python -m pip install $wheel_path -vvv
- name: Check out repo
uses: actions/checkout@v3
- name: Install cuda runtime dependencies
run: |
# For some reason nvidia::libnpp=12.4 doesn't install but nvidia/label/cuda-12.4.0::libnpp does.
# So we use the latter convention for libnpp.
${CONDA_RUN} conda install --yes nvidia/label/cuda-${{ matrix.cuda-version }}.0::libnpp nvidia::cuda-nvrtc=${{ matrix.cuda-version }} nvidia::cuda-toolkit=${{ matrix.cuda-version }} nvidia::cuda-cudart=${{ matrix.cuda-version }} nvidia::cuda-driver-dev=${{ matrix.cuda-version }}
- name: Install test dependencies
run: |
${CONDA_RUN} python -m pip install --pre torchvision --index-url https://download.pytorch.org/whl/nightly/cpu
# Ideally we would find a way to get those dependencies from pyproject.toml
${CONDA_RUN} python -m pip install numpy pytest pillow
- name: Delete the src/ folder just for fun
run: |
# The only reason we checked-out the repo is to get access to the
# tests. We don't care about the rest. Out of precaution, we delete
# the src/ folder to be extra sure that we're running the code from
# the installed wheel rather than from the source.
# This is just to be extra cautious and very overkill because a)
# there's no way the `torchcodec` package from src/ can be found from
# the PythonPath: the main point of `src/` is precisely to protect
# against that and b) if we ever were to execute code from
# `src/torchcodec`, it would fail loudly because the built .so files
# aren't present there.
rm -r src/
ls
- name: Smoke test
run: |
${CONDA_RUN} python test/decoders/manual_smoke_test.py
- name: Run Python tests
run: |
# We skip test_get_ffmpeg_version because it may not have a micro version.
${CONDA_RUN} FAIL_WITHOUT_CUDA=1 pytest test -k "not test_get_ffmpeg_version" -vvv
- name: Run Python benchmark
run: |
${CONDA_RUN} time python benchmarks/decoders/gpu_benchmark.py --devices=cuda:0,cpu --resize_devices=none