A Python implementation for integrating Radius capabilities into AI agent workflows, providing a simple and type-safe way to incorporate Radius functionality into AI agents.
- Seamless integration with Radius
- Support for major AI agent frameworks:
- LangChain
- More coming soon!
- Wallet management and transaction capabilities
- Clean, idiomatic Python implementation
- Type-safe contract interactions
- EVM compatibility
- Integration with Radius' high-throughput and near-instant settlement capabilities
- Python >= 3.10
- pip (for installation)
Install the complete toolkit package:
pip install radius-ai-agent-sdk
This will install the core SDK, but you'll need to install adapter and plugin packages separately.
If you prefer to install only the specific components you need:
# Core package (required)
pip install radius-ai-agent-sdk
# Adapters (pick one based on your AI framework)
pip install radius-ai-agent-sdk-adapter-langchain
# Plugins (install the ones you need)
pip install radius-ai-agent-sdk-plugin-erc20
pip install radius-ai-agent-sdk-plugin-uniswap
pip install radius-ai-agent-sdk-plugin-jsonrpc
# Wallets (install at least one)
pip install radius-ai-agent-sdk-wallet-evm
pip install radius-ai-agent-sdk-wallet-web3
Here's a basic example using LangChain:
from radius.classes.plugin_base import PluginBase
from radius_wallets.evm import EVMWalletClient
from radius_adapters.langchain import get_on_chain_tools
from radius_plugins.erc20 import erc20, USDC
from radius_plugins.uniswap import uniswap
# Create a wallet
wallet = EVMWalletClient(
rpc_url=os.environ.get("RPC_PROVIDER_URL"),
private_key=os.environ.get("WALLET_PRIVATE_KEY")
)
# Configure tools for LangChain
tools = get_on_chain_tools(
wallet=wallet,
plugins=[
erc20(tokens=[USDC]),
uniswap(
base_url=os.environ.get("UNISWAP_BASE_URL"),
api_key=os.environ.get("UNISWAP_API_KEY")
)
]
)
# Use with LangChain
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
# Create the agent
llm = ChatOpenAI(model="gpt-4o")
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
("user", "{input}")
])
agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
# Execute a transaction
response = agent_executor.invoke({"input": "Transfer 0.01 ETH to 0x1234..."})
print(response["output"])
Here's a guide to spinning up an example that demonstrates LangChain integration with Radius:
git clone [email protected]:radiustechsystems/ai-agent-toolkit.git
cd ai-agent-toolkit/python
pip install -e .
cd examples/langchain/web3
Copy the .env.template
file and populate it with your values:
cp .env.template .env
Open .env
and set the following variables:
# AI API Keys
OPENAI_API_KEY=your_openai_api_key_here
# Radius Configuration
RPC_PROVIDER_URL=your_radius_rpc_url_here
WALLET_PRIVATE_KEY=your_wallet_private_key_here
Note:
- Get an OpenAI API key from: https://platform.openai.com/api-keys
- RPC provider URL from Radius testnet: https://testnet.tryradi.us/dashboard/rpc-endpoints
- The wallet private key should be from an EVM-compatible wallet
python example.py
For those who want to contribute or modify the SDK:
# Clone the repository
git clone [email protected]:radiustechsystems/ai-agent-toolkit.git
cd ai-agent-toolkit/python
# Install in development mode
pip install -e ".[dev]"
# Run tests
pytest
# Lint code
ruff check .
If you encounter issues during setup or execution:
Ensure your environment meets the requirements:
python --version # Should be >=3.10
# Remove build artifacts
rm -rf dist/
rm -rf *.egg-info/
# Fresh install
pip install -e .
The Python toolkit is organized into several components:
- Core SDK: Base classes and utilities
- Adapters: Framework-specific integrations (LangChain, etc.)
- Plugins: Specialized functionality (ERC20, Uniswap, etc.)
- Wallets: Wallet implementations for different blockchain clients
Please see the General Contributing Guide for repository-wide guidelines and principles.
When contributing to the Python toolkit, follow these guidelines:
- Use type hints for all function parameters and returns
- Follow PEP 8 with 120 character line limit
- Use snake_case for variables/functions, PascalCase for classes
- Include docstrings for public APIs (preferably Google style)
- Create unit tests for all functionality
This project is licensed under the MIT License.