Skip to content

Commit 0971df8

Browse files
committed
Add logic parameter to recommendation endpoints. Use HTTPS as default.
1 parent 1ec5efa commit 0971df8

12 files changed

+67
-23
lines changed

recombee_api_client/api_client.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ class RecombeeClient:
1919
"""
2020
BATCH_MAX_SIZE = 10000
2121

22-
def __init__(self, database_id, token, protocol = 'http', options = {}):
22+
def __init__(self, database_id, token, protocol = 'https', options = {}):
2323
"""
2424
@param database_id: Name of your database_id at Recombee
2525
@param token: Secret token obtained from Recombee for signing requests
@@ -63,7 +63,7 @@ def send(self, request):
6363

6464
@staticmethod
6565
def __get_http_headers(additional_headers=None):
66-
headers = {'User-Agent': 'recombee-python-api-client/2.3.0'}
66+
headers = {'User-Agent': 'recombee-python-api-client/2.4.0'}
6767
if additional_headers:
6868
headers.update(additional_headers)
6969
return headers

recombee_api_client/api_requests/recommend_items_to_item.py

+18-7
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ class RecommendItemsToItem(Request):
1313
1414
"""
1515

16-
def __init__(self, item_id, target_user_id, count, user_impact=DEFAULT, filter=DEFAULT, booster=DEFAULT, cascade_create=DEFAULT, scenario=DEFAULT, return_properties=DEFAULT, included_properties=DEFAULT, diversity=DEFAULT, min_relevance=DEFAULT, rotation_rate=DEFAULT, rotation_time=DEFAULT, expert_settings=DEFAULT, return_ab_group=DEFAULT):
16+
def __init__(self, item_id, target_user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_create=DEFAULT, scenario=DEFAULT, logic=DEFAULT, return_properties=DEFAULT, included_properties=DEFAULT, user_impact=DEFAULT, diversity=DEFAULT, min_relevance=DEFAULT, rotation_rate=DEFAULT, rotation_time=DEFAULT, expert_settings=DEFAULT, return_ab_group=DEFAULT):
1717
"""
1818
Required parameters:
1919
@param item_id: ID of the item for which the recommendations are to be generated.
@@ -53,9 +53,6 @@ def __init__(self, item_id, target_user_id, count, user_impact=DEFAULT, filter=D
5353
5454
5555
Optional parameters:
56-
@param user_impact: If *targetUserId* parameter is present, the recommendations are biased towards the user given. Using *userImpact*, you may control this bias. For an extreme case of `userImpact=0.0`, the interactions made by the user are not taken into account at all (with the exception of history-based blacklisting), for `userImpact=1.0`, you'll get user-based recommendation. The default value is `0`.
57-
58-
5956
@param filter: Boolean-returning [ReQL](https://docs.recombee.com/reql.html) expression which allows you to filter recommended items based on the values of their attributes.
6057
6158
@param booster: Number-returning [ReQL](https://docs.recombee.com/reql.html) expression which allows you to boost recommendation rate of some items based on the values of their attributes.
@@ -64,6 +61,14 @@ def __init__(self, item_id, target_user_id, count, user_impact=DEFAULT, filter=D
6461
6562
@param scenario: Scenario defines a particular application of recommendations. It can be for example "homepage", "cart" or "emailing". You can see each scenario in the UI separately, so you can check how well each application performs. The AI which optimizes models in order to get the best results may optimize different scenarios separately, or even use different models in each of the scenarios.
6663
64+
@param logic: Logic specifies particular behavior of the recommendation models. You can pick tailored logic for your domain (e-commerce, multimedia, fashion ...) and use case.
65+
66+
See [this section](https://docs.recombee.com/recommendation_logic.html) for list of available logics and other details.
67+
68+
69+
The difference between `logic` and `scenario` is that `logic` specifies mainly behavior, while `scenario` specifies the place where recommendations are shown to the users.
70+
71+
6772
@param return_properties: With `returnProperties=true`, property values of the recommended items are returned along with their IDs in a JSON dictionary. The acquired property values can be used for easy displaying of the recommended items to the user.
6873
6974
@@ -162,6 +167,9 @@ def __init__(self, item_id, target_user_id, count, user_impact=DEFAULT, filter=D
162167
```
163168
164169
170+
@param user_impact: **Expert option** If *targetUserId* parameter is present, the recommendations are biased towards the given user. Using *userImpact*, you may control this bias. For an extreme case of `userImpact=0.0`, the interactions made by the user are not taken into account at all (with the exception of history-based blacklisting), for `userImpact=1.0`, you'll get user-based recommendation. The default value is `0`.
171+
172+
165173
@param diversity: **Expert option** Real number from [0.0, 1.0] which determines how much mutually dissimilar should the recommended items be. The default value is 0.0, i.e., no diversification. Value 1.0 means maximal diversification.
166174
167175
@@ -184,13 +192,14 @@ def __init__(self, item_id, target_user_id, count, user_impact=DEFAULT, filter=D
184192
self.item_id = item_id
185193
self.target_user_id = target_user_id
186194
self.count = count
187-
self.user_impact = user_impact
188195
self.filter = filter
189196
self.booster = booster
190197
self.cascade_create = cascade_create
191198
self.scenario = scenario
199+
self.logic = logic
192200
self.return_properties = return_properties
193201
self.included_properties = included_properties
202+
self.user_impact = user_impact
194203
self.diversity = diversity
195204
self.min_relevance = min_relevance
196205
self.rotation_rate = rotation_rate
@@ -209,8 +218,6 @@ def get_body_parameters(self):
209218
p = dict()
210219
p['targetUserId'] = self.target_user_id
211220
p['count'] = self.count
212-
if self.user_impact is not DEFAULT:
213-
p['userImpact'] = self.user_impact
214221
if self.filter is not DEFAULT:
215222
p['filter'] = self.filter
216223
if self.booster is not DEFAULT:
@@ -219,10 +226,14 @@ def get_body_parameters(self):
219226
p['cascadeCreate'] = self.cascade_create
220227
if self.scenario is not DEFAULT:
221228
p['scenario'] = self.scenario
229+
if self.logic is not DEFAULT:
230+
p['logic'] = self.logic
222231
if self.return_properties is not DEFAULT:
223232
p['returnProperties'] = self.return_properties
224233
if self.included_properties is not DEFAULT:
225234
p['includedProperties'] = self.included_properties
235+
if self.user_impact is not DEFAULT:
236+
p['userImpact'] = self.user_impact
226237
if self.diversity is not DEFAULT:
227238
p['diversity'] = self.diversity
228239
if self.min_relevance is not DEFAULT:

recombee_api_client/api_requests/recommend_items_to_user.py

+12-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ class RecommendItemsToUser(Request):
1313
1414
"""
1515

16-
def __init__(self, user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_create=DEFAULT, scenario=DEFAULT, return_properties=DEFAULT, included_properties=DEFAULT, diversity=DEFAULT, min_relevance=DEFAULT, rotation_rate=DEFAULT, rotation_time=DEFAULT, expert_settings=DEFAULT, return_ab_group=DEFAULT):
16+
def __init__(self, user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_create=DEFAULT, scenario=DEFAULT, logic=DEFAULT, return_properties=DEFAULT, included_properties=DEFAULT, diversity=DEFAULT, min_relevance=DEFAULT, rotation_rate=DEFAULT, rotation_time=DEFAULT, expert_settings=DEFAULT, return_ab_group=DEFAULT):
1717
"""
1818
Required parameters:
1919
@param user_id: ID of the user for which personalized recommendations are to be generated.
@@ -30,6 +30,14 @@ def __init__(self, user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_crea
3030
3131
@param scenario: Scenario defines a particular application of recommendations. It can be for example "homepage", "cart" or "emailing". You can see each scenario in the UI separately, so you can check how well each application performs. The AI which optimizes models in order to get the best results may optimize different scenarios separately, or even use different models in each of the scenarios.
3232
33+
@param logic: Logic specifies particular behavior of the recommendation models. You can pick tailored logic for your domain (e-commerce, multimedia, fashion ...) and use case.
34+
35+
See [this section](https://docs.recombee.com/recommendation_logic.html) for list of available logics and other details.
36+
37+
38+
The difference between `logic` and `scenario` is that `logic` specifies mainly behavior, while `scenario` specifies the place where recommendations are shown to the users.
39+
40+
3341
@param return_properties: With `returnProperties=true`, property values of the recommended items are returned along with their IDs in a JSON dictionary. The acquired property values can be used for easy displaying of the recommended items to the user.
3442
3543
@@ -153,6 +161,7 @@ def __init__(self, user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_crea
153161
self.booster = booster
154162
self.cascade_create = cascade_create
155163
self.scenario = scenario
164+
self.logic = logic
156165
self.return_properties = return_properties
157166
self.included_properties = included_properties
158167
self.diversity = diversity
@@ -180,6 +189,8 @@ def get_body_parameters(self):
180189
p['cascadeCreate'] = self.cascade_create
181190
if self.scenario is not DEFAULT:
182191
p['scenario'] = self.scenario
192+
if self.logic is not DEFAULT:
193+
p['logic'] = self.logic
183194
if self.return_properties is not DEFAULT:
184195
p['returnProperties'] = self.return_properties
185196
if self.included_properties is not DEFAULT:

recombee_api_client/api_requests/recommend_users_to_item.py

+12-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ class RecommendUsersToItem(Request):
1313
1414
"""
1515

16-
def __init__(self, item_id, count, filter=DEFAULT, booster=DEFAULT, cascade_create=DEFAULT, scenario=DEFAULT, return_properties=DEFAULT, included_properties=DEFAULT, diversity=DEFAULT, expert_settings=DEFAULT, return_ab_group=DEFAULT):
16+
def __init__(self, item_id, count, filter=DEFAULT, booster=DEFAULT, cascade_create=DEFAULT, scenario=DEFAULT, logic=DEFAULT, return_properties=DEFAULT, included_properties=DEFAULT, diversity=DEFAULT, expert_settings=DEFAULT, return_ab_group=DEFAULT):
1717
"""
1818
Required parameters:
1919
@param item_id: ID of the item for which the recommendations are to be generated.
@@ -30,6 +30,14 @@ def __init__(self, item_id, count, filter=DEFAULT, booster=DEFAULT, cascade_crea
3030
3131
@param scenario: Scenario defines a particular application of recommendations. It can be for example "homepage", "cart" or "emailing". You can see each scenario in the UI separately, so you can check how well each application performs. The AI which optimizes models in order to get the best results may optimize different scenarios separately, or even use different models in each of the scenarios.
3232
33+
@param logic: Logic specifies particular behavior of the recommendation models. You can pick tailored logic for your domain (e-commerce, multimedia, fashion ...) and use case.
34+
35+
See [this section](https://docs.recombee.com/recommendation_logic.html) for list of available logics and other details.
36+
37+
38+
The difference between `logic` and `scenario` is that `logic` specifies mainly behavior, while `scenario` specifies the place where recommendations are shown to the users.
39+
40+
3341
@param return_properties: With `returnProperties=true`, property values of the recommended users are returned along with their IDs in a JSON dictionary. The acquired property values can be used for easy displaying the recommended users.
3442
3543
@@ -132,6 +140,7 @@ def __init__(self, item_id, count, filter=DEFAULT, booster=DEFAULT, cascade_crea
132140
self.booster = booster
133141
self.cascade_create = cascade_create
134142
self.scenario = scenario
143+
self.logic = logic
135144
self.return_properties = return_properties
136145
self.included_properties = included_properties
137146
self.diversity = diversity
@@ -156,6 +165,8 @@ def get_body_parameters(self):
156165
p['cascadeCreate'] = self.cascade_create
157166
if self.scenario is not DEFAULT:
158167
p['scenario'] = self.scenario
168+
if self.logic is not DEFAULT:
169+
p['logic'] = self.logic
159170
if self.return_properties is not DEFAULT:
160171
p['returnProperties'] = self.return_properties
161172
if self.included_properties is not DEFAULT:

recombee_api_client/api_requests/recommend_users_to_user.py

+12-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ class RecommendUsersToUser(Request):
1313
1414
"""
1515

16-
def __init__(self, user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_create=DEFAULT, scenario=DEFAULT, return_properties=DEFAULT, included_properties=DEFAULT, diversity=DEFAULT, min_relevance=DEFAULT, rotation_rate=DEFAULT, rotation_time=DEFAULT, expert_settings=DEFAULT, return_ab_group=DEFAULT):
16+
def __init__(self, user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_create=DEFAULT, scenario=DEFAULT, logic=DEFAULT, return_properties=DEFAULT, included_properties=DEFAULT, diversity=DEFAULT, min_relevance=DEFAULT, rotation_rate=DEFAULT, rotation_time=DEFAULT, expert_settings=DEFAULT, return_ab_group=DEFAULT):
1717
"""
1818
Required parameters:
1919
@param user_id: User to which we find similar users
@@ -30,6 +30,14 @@ def __init__(self, user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_crea
3030
3131
@param scenario: Scenario defines a particular application of recommendations. It can be for example "homepage", "cart" or "emailing". You can see each scenario in the UI separately, so you can check how well each application performs. The AI which optimizes models in order to get the best results may optimize different scenarios separately, or even use different models in each of the scenarios.
3232
33+
@param logic: Logic specifies particular behavior of the recommendation models. You can pick tailored logic for your domain (e-commerce, multimedia, fashion ...) and use case.
34+
35+
See [this section](https://docs.recombee.com/recommendation_logic.html) for list of available logics and other details.
36+
37+
38+
The difference between `logic` and `scenario` is that `logic` specifies mainly behavior, while `scenario` specifies the place where recommendations are shown to the users.
39+
40+
3341
@param return_properties: With `returnProperties=true`, property values of the recommended users are returned along with their IDs in a JSON dictionary. The acquired property values can be used for easy displaying the recommended users.
3442
3543
@@ -141,6 +149,7 @@ def __init__(self, user_id, count, filter=DEFAULT, booster=DEFAULT, cascade_crea
141149
self.booster = booster
142150
self.cascade_create = cascade_create
143151
self.scenario = scenario
152+
self.logic = logic
144153
self.return_properties = return_properties
145154
self.included_properties = included_properties
146155
self.diversity = diversity
@@ -168,6 +177,8 @@ def get_body_parameters(self):
168177
p['cascadeCreate'] = self.cascade_create
169178
if self.scenario is not DEFAULT:
170179
p['scenario'] = self.scenario
180+
if self.logic is not DEFAULT:
181+
p['logic'] = self.logic
171182
if self.return_properties is not DEFAULT:
172183
p['returnProperties'] = self.return_properties
173184
if self.included_properties is not DEFAULT:

setup.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
setup(
1212
name='recombee-api-client',
1313

14-
version='2.3.0',
14+
version='2.4.0',
1515

1616
description='Client for Recombee recommendation API',
1717
long_description=long_description,

tests/test_cases/item_to_item_recommendation.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010

1111
class ItemToItemRecommendationTest (RecommendationsTest ):
1212

13-
def create_request(self,item_id,target_user_id,count,user_impact=None,filter=None,booster=None,cascade_create=None,scenario=None,return_properties=None,included_properties=None,diversity=None,min_relevance=None,rotation_rate=None,rotation_time=None,expert_settings=None,return_ab_group=None):
13+
def create_request(self,item_id,target_user_id,count,filter=None,booster=None,cascade_create=None,scenario=None,logic=None,return_properties=None,included_properties=None,user_impact=None,diversity=None,min_relevance=None,rotation_rate=None,rotation_time=None,expert_settings=None,return_ab_group=None):
1414
pass
1515

1616
def test_item_to_item_recommendation(self):

tests/test_cases/recommendation.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010

1111
class RecommendationTest (RecommendationsTest ):
1212

13-
def create_request(self,user_id,count,filter=None,booster=None,cascade_create=None,scenario=None,return_properties=None,included_properties=None,diversity=None,expert_settings=None,return_ab_group=None):
13+
def create_request(self,user_id,count,filter=None,booster=None,cascade_create=None,scenario=None,logic=None,return_properties=None,included_properties=None,diversity=None,expert_settings=None,return_ab_group=None):
1414
pass
1515

1616
def test_recommendation(self):

tests/test_cases/test_recommend_items_to_item.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -9,5 +9,5 @@
99

1010
class RecommendItemsToItemTestCase (ItemToItemRecommendationTest):
1111

12-
def create_request(self, item_id, target_user_id, count, user_impact=None, filter=None, booster=None, cascade_create=None, scenario=None, return_properties=None, included_properties=None, diversity=None, min_relevance=None, rotation_rate=None, rotation_time=None, expert_settings=None, return_ab_group=None):
13-
return RecommendItemsToItem(item_id, target_user_id, count, user_impact=user_impact, filter=filter, booster=booster, cascade_create=cascade_create, scenario=scenario, return_properties=return_properties, included_properties=included_properties, diversity=diversity, min_relevance=min_relevance, rotation_rate=rotation_rate, rotation_time=rotation_time, expert_settings=expert_settings, return_ab_group=return_ab_group)
12+
def create_request(self, item_id, target_user_id, count, filter=None, booster=None, cascade_create=None, scenario=None, logic=None, return_properties=None, included_properties=None, user_impact=None, diversity=None, min_relevance=None, rotation_rate=None, rotation_time=None, expert_settings=None, return_ab_group=None):
13+
return RecommendItemsToItem(item_id, target_user_id, count, filter=filter, booster=booster, cascade_create=cascade_create, scenario=scenario, logic=logic, return_properties=return_properties, included_properties=included_properties, user_impact=user_impact, diversity=diversity, min_relevance=min_relevance, rotation_rate=rotation_rate, rotation_time=rotation_time, expert_settings=expert_settings, return_ab_group=return_ab_group)

tests/test_cases/test_recommend_items_to_user.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -9,5 +9,5 @@
99

1010
class RecommendItemsToUserTestCase (RecommendationTest):
1111

12-
def create_request(self, user_id, count, filter=None, booster=None, cascade_create=None, scenario=None, return_properties=None, included_properties=None, diversity=None, min_relevance=None, rotation_rate=None, rotation_time=None, expert_settings=None, return_ab_group=None):
13-
return RecommendItemsToUser(user_id, count, filter=filter, booster=booster, cascade_create=cascade_create, scenario=scenario, return_properties=return_properties, included_properties=included_properties, diversity=diversity, min_relevance=min_relevance, rotation_rate=rotation_rate, rotation_time=rotation_time, expert_settings=expert_settings, return_ab_group=return_ab_group)
12+
def create_request(self, user_id, count, filter=None, booster=None, cascade_create=None, scenario=None, logic=None, return_properties=None, included_properties=None, diversity=None, min_relevance=None, rotation_rate=None, rotation_time=None, expert_settings=None, return_ab_group=None):
13+
return RecommendItemsToUser(user_id, count, filter=filter, booster=booster, cascade_create=cascade_create, scenario=scenario, logic=logic, return_properties=return_properties, included_properties=included_properties, diversity=diversity, min_relevance=min_relevance, rotation_rate=rotation_rate, rotation_time=rotation_time, expert_settings=expert_settings, return_ab_group=return_ab_group)

0 commit comments

Comments
 (0)