-
Notifications
You must be signed in to change notification settings - Fork 0
/
multigrid_solver.jl
928 lines (781 loc) · 41 KB
/
multigrid_solver.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
### A Pluto.jl notebook ###
# v0.12.18
using Markdown
using InteractiveUtils
# ╔═╡ 861aac40-552b-11eb-1151-6b74f5ed3de5
# Used Packages Index
begin
using LinearAlgebra # Linear Algebra
using SparseArrays # Sparse Arrays Optimization
using Plots # Plotting & Visualization
end ;
# ╔═╡ 2bf55ba0-554e-11eb-1ba0-3723b6f49d8d
md"""
## Notebook: Geometric multigrid for 2D-PDE's
"""
# ╔═╡ f893039e-58be-11eb-0c48-f9f499f6856d
md"""
Solving Partial Differential Equations has never been an easy task on mathematicians. In fact, in many cases it's even considered *impossible* to do with our current mathematics, so our best way to approach it is with numerical/computational approximations. It's this exact field that has specialized in solving PDE's numerically: *Using Iterative methods, Fourrier Transforms, Finite Differences, etc..*
This project is about the **Multigrid methods** which are one of the most interesting assets of the numerical computing toolbox. We're also going to do some benchmarking of their performance regarding their iterative counterparts.
Finally, to be able to start, we should first do the initial step of the numerical problem resolution framework: **Discretizing the PDE space**
"""
# ╔═╡ c33cb002-553d-11eb-31d3-3176668c06df
md"""
**Constructing the Laplacian 2D-operator and the Problems PDEs**
"""
# ╔═╡ c68281e6-5539-11eb-10c0-fd665be52ae0
html"""
<p style="text-align: center;">
$A u = \Delta u$ = $\frac{∂²u}{∂x²}\ e_x$ + $\frac{∂²u}{∂y²}\ e_y$
</p>
"""
# ╔═╡ 0e90ca56-5849-11eb-15b6-7f4419690f96
md"""
To construct the laplacian operator, we're using the **Kronecker product** with the identity matrix to develop the axe-wise differentiation operators and sum them up lately to obtain Δ.
"""
# ╔═╡ 3bccede2-5849-11eb-21e0-37c579ac744e
html"""
<center>
<img width="40%" src="https://i.stack.imgur.com/GYj20.png">
<br/>
<figure>
<img src="" alt="Operator A for Au = f">
<figcaption>$\Delta$ Operator Matrix</figcaption>
</figure>
</center>
"""
# ╔═╡ 55b1fd86-584d-11eb-26f3-a739ab86bc4d
md"""Regarding the Kronecker product, it is actually a **computationally expensive** operation, that is why we have to use **sparse matrices** for this extent. The use of sparse matrices is further supported by the sparsity factor of our Laplacian operator that isn't to be ignored.
"""
# ╔═╡ 34f711ea-554f-11eb-342f-0358c848c965
md"""We then need to transform our differential equation into a linear problem in the form of $\textbf{Au=f}$. For that, we only have to use the matrix $σI$ to then factorize the equation by $u(x,y)$.
"""
# ╔═╡ ba523a0e-554f-11eb-162f-8b6e6434d21c
html"""
<center>
$-Δ u(x,y) + σu(x,y) = f(x,y)\ \ \ \ (P_1)$<br/>
$(σI-Δ)u(x,y) = f(x,y)$<br/>
$A_1=σI-Δ$
</center>
"""
# ╔═╡ 4f335f12-573b-11eb-042c-a97c20dd929d
md"""
As for the Anisotropic problem $P_2$, the construction is similar but only using the partial derivatives
"""
# ╔═╡ 8a710356-573b-11eb-11b0-1b418859bb13
html"""
<center>
$-\frac{\partial^2 u(x,y)}{∂x²} - \epsilon \frac{\partial^2 u(x,y)}{∂y²} = f(x,y)\ \ \ \ (P_2)$<br/>
$A_2=(\frac{\partial^2}{∂x²} - \epsilon \frac{\partial^2}{∂y²})I$
</center>
"""
# ╔═╡ be97faee-5532-11eb-1466-15d0f84888cf
begin
function A₁(n::Int, σ::Float64)
∂² = Tridiagonal(ones(n-1), -2 * ones(n), ones(n-1))
∂x² = (n^2) * kron(sparse(∂²), I(n)) # kron is the Kronecker product
∂y² = (n^2) * kron(I(n), sparse(∂²)) # h is the unit of displacement
Δ = ∂x² + ∂y²
return σ * I(n^2) - Δ
end
function A₂(n::Int, ϵ::Float64)
∂² = Tridiagonal(ones(n-1), -2 * ones(n), ones(n-1))
∂x² = (n^2) * kron(sparse(∂²), I(n)) # kron is the Kronecker product
∂y² = (n^2) * kron(I(n), sparse(∂²)) # h is the unit of displacement
return - ∂x² - ϵ * ∂y²
end
A₁(σ::Float64) = n -> A₁(n, σ)
A₂(ϵ::Float64) = n -> A₂(n, ϵ)
end ;
# ╔═╡ 011d1544-58de-11eb-31bc-fb0262856677
md"""
Before jumping to start modelling the solvers, we need first to iterate on the boundaries conditions. The PDE's we're solving are both using the same boundaries conditions $u(x,y) = 0$ on $∂Ω$ so we're just coding them in a function that will be called after each solver iteration to reinject the boundaries so that we don't miss the track of them.
"""
# ╔═╡ 3f38303e-58de-11eb-3bb5-ef7da4dfcce3
function boundaries(v)
n = Int(sqrt(size(v,1)))
gridᵥ = reshape(v, (n, n))'
gridᵥ[1,:] .= 0
gridᵥ[end,:] .= 0
gridᵥ[:,1] .= 0
gridᵥ[:,end] .= 0
return gridᵥ |> transpose |> vec
end ;
# ╔═╡ e2f0fef8-584e-11eb-2f0c-49b4cb4009ba
md"""
**Constructing the solvers algorithms**
For the stationary smoothers, we're each time choosing one of the defined functions below either to be used on its own for comparison or to use it as the smoother in our Multigrid implementation.
"""
# ╔═╡ bbfb0164-5771-11eb-09c0-8d8bbf8e7434
function Jacobi(A, b, u₀ = zeros(size(A, 1)), ϵ = 1e-7, maxiter = 10, bounds = false)
u = u₀; n = Int(sqrt(size(A, 1))); iter = 0
M = Diagonal(A)
N = UnitLowerTriangular(A) + UnitUpperTriangular(A) - 2*I(n^2)
while iter <= maxiter
iter += 1
if bounds
u = boundaries(u)
end
u = inv(M) * (N*u + b)
(norm(b - A*u, 2) > ϵ) || break
end
return u
end ;
# ╔═╡ aafcba2a-5750-11eb-19e9-8fa5b1952b54
function JOR(A, b, ω, u₀ = zeros(size(A, 1)), ϵ = 1e-7, maxiter = 10, bounds = false)
u = u₀; iter = 0
M = Diagonal(A) / ω
while iter <= maxiter
iter += 1
if bounds
u = boundaries(u)
end
r = b - A*u
z = inv(M) * r
u += z
(norm(r, 2) > ϵ) || break
end
return u
end ;
# ╔═╡ 25766a80-583e-11eb-1286-4945ee2b6fdb
function SOR(A, b, ω, u₀ = zeros(size(A, 1)), ϵ = 1e-7, maxiter = 10, bounds = false)
u = u₀; n = Int(sqrt(size(A, 1))); iter = 0
D = Diagonal(A)
L = UnitLowerTriangular(A) - I(n^2)
U = UnitUpperTriangular(A) - I(n^2)
while iter <= maxiter
iter += 1
if bounds
u = boundaries(u)
end
u = inv(D + ω * L) * (ω * b - (ω * U + (ω-1) * D) * u)
(norm(b - A*u, 2) > ϵ) || break
end
return u
end ;
# ╔═╡ 27af4156-5851-11eb-36ba-3f11e34bee5e
html"""
<center><img width="75%" src="https://www.researchgate.net/profile/Colin_Fox/publication/231064411/figure/fig1/AS:408425306574849@1474387589707/Schematic-of-the-V-cycle-multigrid-iterative-algorithm.png" alt="Multigrid V-cycle"></center>
"""
# ╔═╡ a874e446-5851-11eb-0766-17b85ae44f46
md"""As shown in the simple form of grid-spacing in a **V-cycle** multigrid, we need some **interpolation** operators to be used to move from one grid to another:
- *Restriction*: From a *fine* grid to a *coarser* one
- *Prolongation*: From a *coarse* grid to a *finer* one
Therefore, the methods defined below will be used interchangeably.
Also, as we're treating 2 different problems:
- *isotropic*: $A_1u(x,y)=f(x,y)$
- *$\epsilon$-anisotropic*: $A_2u(x,y)=f(x,y)$
That's why we're going to need two different strategies for grids interpolation as we're not moving in the same space for both problems.
"""
# ╔═╡ 40bdad12-55fa-11eb-0b00-c57014be1cdf
# Multigrid's **Isotropic** Interpolation operators
begin
# Restriction
injection(grid) = grid[2:2:end, 2:2:end]
function halfweight(grid)
g = Float64.(grid)
for i=2:2:size(grid,1)-1, j=2:2:size(grid,2)-1
g[i,j] = g[i,j] / 2 - (
g[i-1,j] + g[i+1,j]
+ g[i,j-1] + g[i,j+1]) / 8
end
return injection(g)
end
function fullweight(grid)
g = Float64.(grid)
for i=2:2:size(grid,1)-1, j=2:2:size(grid,2)-1
g[i,j] = g[i,j] / 4 - (
g[i-1,j] + g[i+1,j]
+ g[i,j-1] + g[i,j+1]) / 8 - (
g[i-1,j-1] + g[i+1,j+1]
+ g[i-1,j+1] + g[i+1,j-1]) / 16
end
return injection(g)
end
# Prolongation
function enlarge(grid)
n = size(grid,1) * 2
n == 2 && return repeat(grid, n, n)
g = zeros((n,n))
for i=2:n-1, j=2:n-1
g[i, j] = grid[i÷2, j÷2]
end
return g
end
function linearize(grid)
n = size(grid,1) * 2
n == 2 && return repeat(grid, n, n)
g = zeros((n,n))
for i=2:n-1, j=2:n-1
g[i, j] = (grid[Int(floor((i+1)/2)), Int(floor((j+1)/2))]
+ grid[Int(ceil((i+1)/2)), Int(floor((j+1)/2))]
+ grid[Int(floor((i+1)/2)), Int(ceil((j+1)/2))]
+ grid[Int(ceil((i+1)/2)), Int(ceil((j+1)/2))]) / 4
end
return g
end
end ;
# ╔═╡ ab3263ae-581b-11eb-022f-217f547efa3a
html"""
<center><img src="https://ars.els-cdn.com/content/image/1-s2.0-S0377042716300577-fx1.jpg" alt="V-cycle Multigrid Iteration"></center>
"""
# ╔═╡ 0a6287c6-5819-11eb-2b9c-ebe99da1e82f
"""
multigrid(A, b, u, l, ω, ϵ, steps,
restrict, prolong, iter)
l-level Multigrid cycle. Each sub-level dive is held with x10 smoothing iterations.
- A: the PDE's linear operator constructor
- restrict: function for grid restriction
- prolong: function for grid prolongation
- iter: number of iterations of **current** grid smoothing
- steps: number of multigrid callbacks per cycle:
- 1 (default) is for V-cycle
- 2 is for normal W-cycle
- n (> 2) is for W-cycles with n sub-refinements
"""
function multigrid(A, b, u, l, ω, ϵ=1e-7, steps=1,
restrict=injection, prolong=enlarge, iter=10)
n = Int(sqrt(size(b, 1)))
Aₙ = A(n)
if l == 0
# We can also use a direct solver instead
# u = Array(Aₙ) \ b
u = JOR(Aₙ, b, ω, u, ϵ, iter) # Resolution
else
u = JOR(Aₙ, b, ω, u, ϵ, iter) # Pre-smoothing
# Defect restriction
r = reshape(b - Aₙ*u, (n, n)) |> transpose |>
restrict |> transpose |> vec
# Coarse-level Correction
δᵣ = zeros(size(r))
for i=1:steps
δᵣ = multigrid(A, r, δᵣ, l-1, ω, ϵ,
steps, restrict, prolong, iter*3)
end
# Defect Prolongation δᵣ → δ
δ = reshape(δᵣ, (n÷2, n÷2)) |> transpose |>
prolong |> transpose |> vec
u += δ # Correction
u = JOR(Aₙ, b, ω, u, ϵ, iter) # Post-smoothing
end
return u
end ;
# ╔═╡ 628964aa-5854-11eb-2d40-45bc01ae2357
md"""
**Simulation and Results Interpretation**
We start by running our *isotropic* problem resolution governed by the $A_1$ operator. We're also only interested in the *unit square* resolution of the function $f$, and for it we discretize the space on $n=1024$ units, $h=1/n$ being the displacement unit.
"""
# ╔═╡ cdfd18c0-57fd-11eb-2dbb-415d4e27fa5d
begin
n = 1024
h = 1 / n
ω = 0.95
σ = 0.7
A = A₁(σ)
u = zeros(n^2)
f = 3
b = [sin(2π*f*i*j) for i=0:h:1-h for j=0:h:1-h]
end ;
# ╔═╡ 5c49ed5e-585a-11eb-32d2-0ddecc88d963
# Jacobi Over Relaxation
@elapsed u₁ = JOR(A(n), b, ω, u, 1e-30, 50, true)
# ╔═╡ 7d83e592-585a-11eb-2a5d-1f8c8fb2fd8b
# Multigrid V-cycle
@elapsed u₂ = multigrid(A, b, u, 3, ω, 1e-30, 1, injection, linearize)
# ╔═╡ 046db82e-585d-11eb-158b-c760258806ab
md"""
Examining the cells above, we can notice that both solvers took a similar time to finish their iterations. If we then thoroughly examine the written multigrid code, we'll find out that for the current simulation, while it yielded nearly the **same execution-time** as the Jacobi-Over-Relaxation method, we're actually running a *3-level V-cycle multigrid* that computes over **800 iterations** and that also have given a by-far **better approximation** than its iterative counterpart even when running most of those iterations on the *coarser* grid 128x128 instead of the original 1024x1024 one.
"""
# ╔═╡ 6ce6509e-5783-11eb-1066-515dfad96fec
# Comparing solutions error rates
begin
eⱼ = b - A(n)*u₁ # Jacobi solution error
eₘ = b - A(n)*u₂ # Multigrid solution error
fastr = norm(eₘ, 2) - norm(eⱼ, 2)
@show "||eₘ|| $(fastr < 0 ? '<' : '>') ||eⱼ||"
end
# ╔═╡ b69d80da-5856-11eb-1fae-5fdf08297723
@show "Error norm gain: $(round(abs(fastr), digits=5))"
# ╔═╡ 421e9880-585f-11eb-1a4a-db98dbf494d6
md"""
The near-similarity of the execution-time between both solvers is actually due to the fact that the 300 iterations ran by the Multigrid are equivalent to only 48 ones of the Jacobi-Over-Relaxation method.
"""
# ╔═╡ 3a7b6bbe-5853-11eb-12d0-2d3907b68685
@show "Multigrid JOR-relative cost: $(20+(20*3)/4+(20*9)/16+(20*27)/256) iterations"
# ╔═╡ 441ed93e-5860-11eb-07f0-f70c9720c8b5
md"""**Solutions Visualization & interpretation**"""
# ╔═╡ 0298049a-57b4-11eb-0cb2-e3524c90e250
# Visualizing solution errors for the 2D-Poisson Problem
begin
# Jacobi-OR
g₁ = reshape(eⱼ, (n, n))' |> Array
htmp₁ = heatmap(1:n, 1:n, g₁, fmt=:png, ratio=1,
title="JOR Solution Error")
# Multigrid V-cycle
g₂ = reshape(eₘ, (n, n))' |> Array
htmp₂ = heatmap(1:n, 1:n, g₂, fmt=:png, ratio=1,
title="Multigrid Solution Error")
plot(htmp₁, htmp₂, layout=(1,2), size=(1000,500))
end
# ╔═╡ 870b1224-5860-11eb-3d77-1d6a0bc7f8a6
md"""From the graphs shown above and below, we can tell that the multigrid's solution is by far a better solution than the iterative JOR solver *(Multigrid's being dimmer and softer which by the graph's legend means a **nearer to 0 error**)*. Also, the solutions difference distribution tells us even more about the struggle that Jacobi-Over-Relaxation method had trying to polish the *lowest frequencies* in only 50 iterations.
"""
# ╔═╡ 71deb1c0-5843-11eb-315c-b9cee350e560
# Visualizing solutions difference for the 2D-Poisson Problem
begin
htmp = heatmap(1:n, 1:n, g₂ - g₁, fmt=:png, ratio=1,
title="Solutions Difference Heatmap")
sfc = surface(g₂ - g₁, fmt=:png, ratio=1, legend=false,
title="Solutions Difference Distribution")
plot(htmp, sfc, layout=(1,2), size=(1000,500))
end
# ╔═╡ 32f264d2-584a-11eb-01ba-3b4ea67003df
md"""**V-cycle vs W-cycle**
"""
# ╔═╡ d27ae6f8-586d-11eb-1ed3-1da566271a73
html"""
<center>
<img width="75%" src="https://d3i71xaburhd42.cloudfront.net/5dd2565fee1cdda8cf9ba444262f3ba3b5323219/73-Figure4.8-1.png"/>
</center>
"""
# ╔═╡ d25069b4-5874-11eb-3876-dd2e4b0cce2a
md"""
We'll now proceed to compare the convergence of the V-cycle and the W-cycle variants of the multigrid solver for various $\sigma$ and $n$ levels for the problem operator $A₁(\sigma, n)$."""
# ╔═╡ b1ee0492-5874-11eb-35ef-27791afce7a1
md"""**1-** $n = 1024\ ,\ \sigma = 0.7$"""
# ╔═╡ e70c7750-5863-11eb-38ea-157cc0b19d9b
begin
σ₁ = 0.7
n₁ = 1024
h₁ = 1 / n₁
uₙ₁ = zeros(n₁^2)
bₙ₁ = [sin(2π*f*i*j) for i=0:h₁:1-h₁ for j=0:h₁:1-h₁]
A₁₁ = A₁(σ₁)
end ;
# ╔═╡ 35ce219c-5869-11eb-39f9-577d4de271b1
# Multigrid V-cycle
@elapsed uᵢ₁ = multigrid(A₁₁, bₙ₁, uₙ₁, 3, ω, 1e-30, 1)
# ╔═╡ 5757f624-5869-11eb-3006-6fd9f81ba58c
# Multigrid 2-steps W-cycle
@elapsed uⱼ₁ = multigrid(A₁₁, bₙ₁, uₙ₁, 3, ω, 1e-30, 2)
# ╔═╡ 624f194a-5873-11eb-1ed4-112551856dfe
md"""
By just executing both solvers, we can already notice the difference in time between both solvers. The difference shown above actually makes sense: Our W-cycle is a **2-step** one on a **3-level** multigrid, which means it takes the exact form of a W, then we're executing the same number of iterations but **twice**. This gets reflected by the *more-than-twice* execution time we have with the W-cycle, compared to the V-cycle.
"""
# ╔═╡ ebf9da62-586a-11eb-0386-7576e50ef520
# Comparing solutions error rates
begin
eᵢ₁ = bₙ₁ - A₁₁(n)*uᵢ₁ # V-cycle solution error
eⱼ₁ = bₙ₁ - A₁₁(n)*uⱼ₁ # W-cycle solution error
fastr₁ = norm(eᵢ₁, 2) - norm(eⱼ₁, 2)
@show "||eᵥ|| $(fastr₁ < 0 ? '<' : '>') ||eᵪ||"
end
# ╔═╡ 04354736-5877-11eb-0a11-dd87cbdf782e
md"""From here, we can confirm that the W-cycle was actually worth the wait, as it did help smoothing out the error in a more extreme way than the V-cycle did.
"""
# ╔═╡ 4a51a37e-586b-11eb-2304-a73fbb512158
@show "Error norm gain: $(round(fastr₁, digits=5))"
# ╔═╡ 69ca47ba-586b-11eb-18a6-8128dd4670ce
# Visualizing solution errors
begin
# V-cycle
gᵢ₁ = reshape(eᵢ₁, (n₁, n₁))' |> Array
htmpᵢ₁ = heatmap(1:n₁, 1:n₁, gᵢ₁, fmt=:png, ratio=1,
title="V-cycle - n = 1024 - σ = 0.7")
# W-cycle
gⱼ₁ = reshape(eⱼ₁, (n₁, n₁))' |> Array
htmpⱼ₁ = heatmap(1:n₁, 1:n₁, gⱼ₁, fmt=:png, ratio=1,
title="W-cycle - n = 1024 - σ = 0.7")
plot(htmpᵢ₁, htmpⱼ₁, layout=(1,2), size=(1000,500))
end
# ╔═╡ 3944a45c-5873-11eb-1af2-65ad1dbc48df
md"""**2-** $n = 1024\ ,\ \sigma = 7$"""
# ╔═╡ c4d86ad0-586e-11eb-3296-8f61deff1e47
begin
σ₂ = 7.
A₁₂ = A₁(σ₂)
uᵢ₂ = multigrid(A₁₂, bₙ₁, uₙ₁, 3, ω, 1e-30, 1) # Multigrid V-cycle
uⱼ₂ = multigrid(A₁₂, bₙ₁, uₙ₁, 3, ω, 1e-30, 2) # Multigrid W-cycle
eᵢ₂ = bₙ₁ - A₁₂(n)*uᵢ₂ # V-cycle solution error
eⱼ₂ = bₙ₁ - A₁₂(n)*uⱼ₂ # W-cycle solution error
fastr₂ = norm(eᵢ₂, 2) - norm(eⱼ₂, 2)
end ;
# ╔═╡ 1037e1a6-5872-11eb-0820-bd41a05d1af1
@show "||eᵥ|| $(fastr₂ < 0 ? '<' : '>') ||eᵪ||"
# ╔═╡ f0e013b0-586e-11eb-2457-f917877375cb
@show "Error norm gain: $(round(abs(fastr₂), digits=5))"
# ╔═╡ 18c95184-5871-11eb-0c6e-d3e710f51be2
@show "Error norm gain - V-cycle: $(round(abs(norm(eᵢ₂, 2) - norm(eᵢ₁, 2)), digits=5))"
# ╔═╡ 362bda12-5871-11eb-3c16-8d53b233a01d
@show "Error norm gain - W-cycle: $(round(abs(norm(eⱼ₂, 2) - norm(eⱼ₁, 2)), digits=5))"
# ╔═╡ 41c925c2-5877-11eb-2e1d-af5b5f0cd74a
md"""
Increasing $\sigma$ by a factor of x10 lead both solvers to better solutions relatively, but it did have the same effect on both of them as the error gain of the W-cycle over the V-cycle is still nearly the same.
"""
# ╔═╡ 3a56d20a-5875-11eb-03c0-a5b112d19efe
md"""**3-** $n = 1024\ ,\ \sigma = 70$"""
# ╔═╡ 3a5cb224-5875-11eb-2c1b-97436009b686
begin
σ₃ = 70.
A₁₃ = A₁(σ₃)
uᵢ₃ = multigrid(A₁₃, bₙ₁, uₙ₁, 3, ω, 1e-30, 1) # Multigrid V-cycle
uⱼ₃ = multigrid(A₁₃, bₙ₁, uₙ₁, 3, ω, 1e-30, 2) # Multigrid W-cycle
eᵢ₃ = bₙ₁ - A₁₃(n)*uᵢ₃ # V-cycle solution error
eⱼ₃ = bₙ₁ - A₁₃(n)*uⱼ₃ # W-cycle solution error
fastr₃ = norm(eᵢ₃, 2) - norm(eⱼ₃, 2)
end ;
# ╔═╡ 3a6569f0-5875-11eb-344d-5bf556e0aa8d
@show "||eᵥ|| $(fastr₃ < 0 ? '<' : '>') ||eᵪ||"
# ╔═╡ 3a668812-5875-11eb-326f-87f50db349c8
@show "Error norm gain: $(round(abs(fastr₃), digits=5))"
# ╔═╡ 3a784ba6-5875-11eb-1979-7d9a299ea243
@show "Error norm gain - V-cycle: $(round(abs(norm(eᵢ₃, 2) - norm(eᵢ₂, 2)), digits=5))"
# ╔═╡ 3a805846-5875-11eb-0f01-071787fe43fc
@show "Error norm gain - W-cycle: $(round(abs(norm(eⱼ₃, 2) - norm(eⱼ₂, 2)), digits=5))"
# ╔═╡ 446a6f40-586b-11eb-282a-f94ee14269a2
md"""
Increasing $\sigma$ by a factor of x100 lead both solvers to better solutions, and this time, it started showing its effect on the W side of things more than on the V-cycle's side. But still, it also increased the error-wise gain of the V-cycle multigrid solver too.
"""
# ╔═╡ 1832d306-5878-11eb-311c-11fabb6bbb2c
md"""**4-** $n = 256\ ,\ \sigma = 7$"""
# ╔═╡ 18391a04-5878-11eb-3287-57163da7c4f8
begin
n₂ = 256
h₂ = 1 / n₂
uₙ₂ = zeros(n₂^2)
bₙ₂ = [sin(2π*f*i*j) for i=0:h₂:1-h₂ for j=0:h₂:1-h₂]
uᵢ₄ = multigrid(A₁₂, bₙ₂, uₙ₂, 3, ω, 1e-30, 1) # Multigrid V-cycle
uⱼ₄ = multigrid(A₁₂, bₙ₂, uₙ₂, 3, ω, 1e-30, 2) # Multigrid W-cycle
eᵢ₄ = bₙ₂ - A₁₂(n₂)*uᵢ₄ # V-cycle solution error
eⱼ₄ = bₙ₂ - A₁₂(n₂)*uⱼ₄ # W-cycle solution error
fastr₄ = norm(eᵢ₄, 2) - norm(eⱼ₄, 2)
end ;
# ╔═╡ 183e589a-5878-11eb-3584-b37c8b96fb45
@show "||eᵥ|| $(fastr₄ < 0 ? '<' : '>') ||eᵪ||"
# ╔═╡ 18484de4-5878-11eb-22f5-f37516a22b29
@show "Error norm gain: $(round(abs(fastr₄), digits=5))"
# ╔═╡ 184a1dc4-5878-11eb-3513-9fe97c35da4c
@show "Error norm gain - V-cycle: $(round(abs(norm(eᵢ₄, 2) - norm(eᵢ₂, 2)), digits=5))"
# ╔═╡ 1854a65c-5878-11eb-2473-b7acbd68e216
@show "Error norm gain - W-cycle: $(round(abs(norm(eⱼ₄, 2) - norm(eⱼ₂, 2)), digits=5))"
# ╔═╡ 1855c320-5878-11eb-0468-b76ec811f012
md"""
Decreasing $n$ by a factor of x4 lead both solvers as usual to **better solutions**, this time, having a **huge effect on the V-cycle**'s side compared to the W-cycle as the difference between the solutions is converging to none. Still, the latter is the better solver on these simulation settings.
As for the effect this had on improving the approximation, this was expected: Actually, as we go down in the grid's size, we're releasing the multigrid from the burden of having to interpolate on bigger grids *(the ones that we got rid of when we divided the fine size by 4)* which means the solver now is **less error-prone** than on the bigger grid case. Also, let's not forget that by doing such, we're giving the multigrid the opportunity to **spend the same number of iterations but on coarser grids**, this helps it converge faster than before. And this is exactly why we witnessed these huge evolutions on the approximation error.
"""
# ╔═╡ b03feb94-587c-11eb-04b3-33363338be39
md"""**5-** $n = 32\ ,\ \sigma = 7$"""
# ╔═╡ b043fe28-587c-11eb-31a6-d9199b0a3231
begin
n₃ = 32
h₃ = 1 / n₃
uₙ₃ = zeros(n₃^2)
bₙ₃ = [sin(2π*f*i*j) for i=0:h₃:1-h₃ for j=0:h₃:1-h₃]
uᵢ₅ = multigrid(A₁₂, bₙ₃, uₙ₃, 3, ω, 1e-30, 1) # Multigrid V-cycle
uⱼ₅ = multigrid(A₁₂, bₙ₃, uₙ₃, 3, ω, 1e-30, 2) # Multigrid W-cycle
eᵢ₅ = bₙ₃ - A₁₂(n₃)*uᵢ₅ # V-cycle solution error
eⱼ₅ = bₙ₃ - A₁₂(n₃)*uⱼ₅ # W-cycle solution error
fastr₅ = norm(eᵢ₅, 2) - norm(eⱼ₅, 2)
end ;
# ╔═╡ b045b128-587c-11eb-1064-8166fe875bd9
@show "||eᵥ|| $(fastr₅ < 0 ? '<' : '>') ||eᵪ||"
# ╔═╡ b053d5a2-587c-11eb-0fcf-053648eb60d9
@show "Error norm gain: $(round(abs(fastr₅), digits=5))"
# ╔═╡ b0551278-587c-11eb-174f-cf692bcd0675
@show "Error norm gain - V-cycle: $(round(abs(norm(eᵢ₅, 2) - norm(eᵢ₂, 2)), digits=5))"
# ╔═╡ b060aa6e-587c-11eb-3ac9-5935786e20c1
@show "Error norm gain - W-cycle: $(round(abs(norm(eⱼ₅, 2) - norm(eⱼ₂, 2)), digits=5))"
# ╔═╡ b061db8a-587c-11eb-312a-fd93e66e3039
md"""
On the abstract side of the story, as the theory states, the W-cycle is still a better solver than the V-cycle. But as we're still approaching coarser grid sizes *(here dividing by a factor of x32)*, the fine-tuning is happening on even coarser grids *(with a size of 4x4 in these settings)* so increasing the number of iterations or further smoothing out the approximation n-times *(as it's the case for the W-cycle)* **isn't going to make any difference**.
**Restriction Operators**
Trying to visualize the workings of the Multigrid solver, we always stumble on the matrix transformations we're using to interpolate the grid we have to a coarser one *(restriction)* or to a finer one *(prolongation)*. As we already created these 3 operators *(see code in the solvers implementation part)*, we're going to compare them according to what they give in term of approximation error.
For this benchmarking, we're conducting the $n=1024$ , $\sigma=7$ simulation. We're also going to use the **4-level 2-steps W-cycle** multigrid equipped with the **linearization** prolongation operator for better results and more complexity to be able to well-assess the performance difference between all runs.
"""
# ╔═╡ 5cfbb91a-5881-11eb-39ed-817b986b9832
# Restriction by Injection
@elapsed uⱼ₆ = multigrid(A₁₂, bₙ₁, uₙ₁, 4, ω, 1e-30, 2, injection, linearize)
# ╔═╡ 5d1657a0-5881-11eb-2784-0d213e722e7f
# Restriction by Halfweighting
@elapsed uⱼ₇ = multigrid(A₁₂, bₙ₁, uₙ₁, 4, ω, 1e-30, 2, halfweight, linearize)
# ╔═╡ 5d2bbe10-5881-11eb-3b4c-3984a432b8f1
# Restriction by Fullweighting
@elapsed uⱼ₈ = multigrid(A₁₂, bₙ₁, uₙ₁, 4, ω, 1e-30, 2, fullweight, linearize)
# ╔═╡ 1a70c16a-5886-11eb-188e-317a78df7b25
md"""
From the execution-times of the 3 variants, we can conclude that thanks to Julia's loops optimization, we can use the 3 restriction operators interchangeably without any loss in performance.
"""
# ╔═╡ 5d41df08-5881-11eb-3abc-6f4480396028
# Comparing solutions error rates
begin
eⱼ₆ = bₙ₁ - A₁₂(n)*uⱼ₆ # Injection solution error - eᵢ
eⱼ₇ = bₙ₁ - A₁₂(n)*uⱼ₇ # Halfweighting solution error - eₕ
eⱼ₈ = bₙ₁ - A₁₂(n)*uⱼ₈ # Fullweighting solution error - eᵩ
fastr₆₇ = norm(eⱼ₆, 2) - norm(eⱼ₇, 2)
fastr₆₈ = norm(eⱼ₆, 2) - norm(eⱼ₈, 2)
fastr₇₈ = norm(eⱼ₇, 2) - norm(eⱼ₈, 2)
end ;
# ╔═╡ 5afc977c-5881-11eb-3629-ef6b8f815404
@show "||eₕ|| $(fastr₇₈ < 0 ? '<' : '>') ||eᵩ||"
# ╔═╡ 4c5d29e0-5887-11eb-13a8-3fc1fc4ff05e
@show "Error norm gain - HW/FW: $(round(abs(fastr₇₈), digits=5))"
# ╔═╡ dac43802-586a-11eb-3b90-8fbf23bfb42b
# Visualizing solution errors
begin
gⱼ₃ = reshape(eⱼ₇ - eⱼ₈, (n₁, n₁))' |> Array
htmpⱼ₃ = heatmap(1:n₁, 1:n₁, gⱼ₃, fmt=:png, ratio=1,
title="Approx. Difference - Halfweighting/Fullweighting")
sfcⱼ₃ = surface(gⱼ₃, fmt=:png, ratio=1, legend=false,
title="Approx. Difference Distribution")
plot(htmpⱼ₃, sfcⱼ₃, layout=(1,2), size=(1000,500))
end
# ╔═╡ 5ad1d1f4-5881-11eb-2c3c-177e2beef14f
@show "||eᵢ|| $(fastr₆₇ < 0 ? '<' : '>') ||eₕ||"
# ╔═╡ 3790a728-5887-11eb-0d61-651e924d1035
@show "Error norm gain - I/HW: $(round(abs(fastr₆₇), digits=5))"
# ╔═╡ 88d86508-5887-11eb-00b8-79cb3b213e22
# Visualizing solution errors
begin
gⱼ₂ = reshape(eⱼ₆ - eⱼ₇, (n₁, n₁))' |> Array
htmpⱼ₂ = heatmap(1:n₁, 1:n₁, gⱼ₂, fmt=:png, ratio=1,
title="Approx. Difference - Injection/Halfweighting")
sfcⱼ₂ = surface(gⱼ₂, fmt=:png, ratio=1, legend=false,
title="Approx. Difference Distribution")
plot(htmpⱼ₂, sfcⱼ₂, layout=(1,2), size=(1000,500))
end
# ╔═╡ 5ae6f7da-5881-11eb-00eb-732d1dfcf26f
@show "||eᵢ|| $(fastr₆₈ < 0 ? '<' : '>') ||eᵩ||"
# ╔═╡ 494121ac-5887-11eb-1264-7155e70d3f0f
@show "Error norm gain I/FW: $(round(abs(fastr₆₈), digits=5))"
# ╔═╡ 92df302a-5889-11eb-2eeb-e7122d1d6782
md"""
What we learn from these results is that as long as we're not changing the local values of the solution matrices, there's no problem coarsening the grid some more. Which is in a bit the opposite result of the comparison between the *linearization* and the direct *enlargement* prolongations operators. This may be explained by the fact that when using the multigrid solver, we're trying to port our problem into coarser grids to solve it on that level, so if we're changing the values **even if it's a local-aware change** *(as it's the case for halfweighting and even more in fullweighting)*, we may be **changing the target distribution** and by such furthering our path to the optimal minima.
**Anisotropic Problem Resolution**
We already constructed the Anisotropic problem PDE $(P_2)$ in the PDE's & Operators Construction part of the document, so we're going to directly try to solve it using our 4-level 2-step W-cycle multigrid equipped by the injection & linearization interpolation operators.
**1-** $ϵ = 0.3$
"""
# ╔═╡ 9397065a-5889-11eb-0de5-5b56807adc26
begin
ϵ₁ = 0.3
A₂₁ = A₂(ϵ₁)
uⱼ₉ = multigrid(A₂₁, bₙ₁, uₙ₁, 4, ω, 1e-30, 2, injection, linearize)
eⱼ₉ = bₙ₁ - A₂₁(n₁)*uⱼ₉
end ;
# ╔═╡ 93bfc128-5889-11eb-3009-5b8ca0ec96d8
# Visualizing solution errors
begin
gⱼ₄ = reshape(eⱼ₉, (n₁, n₁))' |> Array
htmpⱼ₄ = heatmap(1:n₁, 1:n₁, gⱼ₄, fmt=:png, ratio=1,
title="Approx. Error - ϵ = 0.3")
sfcⱼ₄ = surface(gⱼ₄, fmt=:png, ratio=1, legend=false,
title="Approx. Error Distribution")
plot(htmpⱼ₄, sfcⱼ₄, layout=(1,2), size=(1000,500))
end
# ╔═╡ 692663c8-5890-11eb-2667-53cabbb41ef2
md"""**2-** $ϵ = 3$"""
# ╔═╡ 7d33ca6c-5891-11eb-0f78-d12c4db73a43
begin
ϵ₂ = 3.
A₂₂ = A₂(ϵ₂)
uⱼ₁₀ = multigrid(A₂₂, bₙ₁, uₙ₁, 4, ω, 1e-30, 2, injection, linearize)
eⱼ₁₀ = bₙ₁ - A₂₂(n₁)*uⱼ₁₀
end ;
# ╔═╡ 7d365d0e-5891-11eb-048a-d3cfdbce0aba
# Visualizing solution errors
begin
gⱼ₅ = reshape(eⱼ₁₀, (n₁, n₁))' |> Array
htmpⱼ₅ = heatmap(1:n₁, 1:n₁, gⱼ₅, fmt=:png, ratio=1,
title="Approx. Error - ϵ = 3")
sfcⱼ₅ = surface(gⱼ₅, fmt=:png, ratio=1, legend=false,
title="Approx. Error Distribution")
plot(htmpⱼ₅, sfcⱼ₅, layout=(1,2), size=(1000,500))
end
# ╔═╡ 22af0768-5892-11eb-3954-41099e721288
md"""**3-** $ϵ = 30$"""
# ╔═╡ 22b4d472-5892-11eb-091f-553428e2dc6a
begin
ϵ₃ = 30.
A₂₃ = A₂(ϵ₃)
uⱼ₁₁ = multigrid(A₂₃, bₙ₁, uₙ₁, 4, ω, 1e-30, 2, injection, linearize)
eⱼ₁₁ = bₙ₁ - A₂₃(n₁)*uⱼ₁₁
end ;
# ╔═╡ 22bf4c40-5892-11eb-3e51-075e4309d973
# Visualizing solution errors
begin
gⱼ₆ = reshape(eⱼ₁₁, (n₁, n₁))' |> Array
htmpⱼ₆ = heatmap(1:n₁, 1:n₁, gⱼ₆, fmt=:png, ratio=1,
title="Approx. Error - ϵ = 30")
sfcⱼ₆ = surface(gⱼ₆, fmt=:png, ratio=1, legend=false,
title="Approx. Error Distribution")
plot(htmpⱼ₆, sfcⱼ₆, layout=(1,2), size=(1000,500))
end
# ╔═╡ 93d3d1dc-5889-11eb-3f54-1319a2e33867
md"""
Trying to analyze the figures we get from the 3 simulations we ran, we can identify one main problem which is the **non-convergence on the pure directions** being X and Y axis of the vector space. Also, when we look into the difference between the first and the second graphs, we may conclude that the error is also *alternating from one direction into the other* while moving through intervals of values of $\epsilon$.
This is actually caused by the nature of the **deformation** that the PDE applies to the vector space. As the equation $P_2$ states, differentiating the solution on the X-axis by one unit will directly force differentiating it by $\epsilon$ units onto the Y-axis.
$-\frac{\partial^2 u(x,y)}{∂x²} - \epsilon \frac{\partial^2 u(x,y)}{∂y²} = f(x,y)\ \ \ \ (P_2)$
While this may sound not-harmful at all for our solvers, what we can guess is causing this issue, is actually our coarsening strategies. They're **based on equally distributed spaces** and that's why they're affecting **each one of the neighbors equal coefficients** when using neighbors-based coarsening. And this is the exact reason why the injection is yielding the best restriction therefore the best approximation among all the other operators on this problem.
One new way we can think of solving this problem, is to try to create a *halfweighting-like version of a restriction operator*, but **taking into account the $\epsilon$ parameter for the Y direction**.
"""
# ╔═╡ 9453db7c-5889-11eb-0a4f-63e7ef7bdb6d
begin
"""
ϵ_halfweight(ϵ, grid)
A function that returns the ϵ-halfweighting of the grid taken as input.
"""
function ϵ_halfweight(ϵ, grid)
g = Float64.(grid)
for i=2:2:size(grid,1)-1, j=2:2:size(grid,2)-1
g[i,j] = ϵ * g[i,j] / 4 - (
g[i-1,j] + g[i+1,j]
+ (1 - ϵ/2) * g[i,j-1] + (1 - ϵ/2) * g[i,j+1]) / 8
end
return injection(g)
end
"""
ϵ_halfweight(ϵ)
A function that constructs the ϵ-halfweighting operator.
"""
ϵ_halfweight(ϵ) = grid -> ϵ_halfweight(ϵ, grid)
end ;
# ╔═╡ 946796a8-5889-11eb-1ecf-05cc703365a8
begin
uⱼ₁₂ = multigrid(A₂₂, bₙ₁, uₙ₁, 4, ω, 1e-30, 2,
ϵ_halfweight(ϵ₂), enlarge)
eⱼ₁₂ = bₙ₁ - A₂₂(n₁)*uⱼ₁₂
end ;
# ╔═╡ 96746de0-5889-11eb-155b-4961c27f065f
# Visualizing solution errors
begin
gⱼ₇ = reshape(eⱼ₁₂, (n₁, n₁))' |> Array
htmpⱼ₇ = heatmap(1:n₁, 1:n₁, gⱼ₇, fmt=:png, ratio=1,
title="ϵ-halfweighting - ϵ = 3")
sfcⱼ₇ = surface(gⱼ₇, fmt=:png, ratio=1, legend=false,
title="Approx. Error Distribution")
plot(htmpⱼ₇, sfcⱼ₇, layout=(1,2), size=(1000,500))
end
# ╔═╡ 968522d4-5889-11eb-2a74-39a374ed38ca
norm(eⱼ₁₂, 2) - norm(eⱼ₁₀, 2)
# ╔═╡ b4194c8a-58a7-11eb-18af-ef8859041bd8
md"""
**And voilà!**
We finally obtained an operator that worked better and produced a cleaner approximation with less error norm than the best operator among the restrictors tried on the anisotropic problem.
The idea behind it is that as the Y-axis has got **stretched out by $\epsilon$**, then at every point of our grid, we'll have an $\epsilon$-contribution of one element, and $1-\epsilon/N$, $N$ being the number of neighbors around it that are taken into account.
By such, we could decrease our norm by **55-units** on the euclidian norm of the vector space."""
# ╔═╡ e20eecfe-58ad-11eb-387c-ddbbbdeeedd1
html"""
<p style="text-align:right">
<small>Rami KADER . HPC-AI20</small>
-
<small>Mines ParisTech</small>
<br/>
<small><small>Sat. Jan 16, 2021</small></small>
</p>
"""
# ╔═╡ Cell order:
# ╟─2bf55ba0-554e-11eb-1ba0-3723b6f49d8d
# ╟─f893039e-58be-11eb-0c48-f9f499f6856d
# ╠═861aac40-552b-11eb-1151-6b74f5ed3de5
# ╟─c33cb002-553d-11eb-31d3-3176668c06df
# ╟─c68281e6-5539-11eb-10c0-fd665be52ae0
# ╟─0e90ca56-5849-11eb-15b6-7f4419690f96
# ╟─3bccede2-5849-11eb-21e0-37c579ac744e
# ╟─55b1fd86-584d-11eb-26f3-a739ab86bc4d
# ╟─34f711ea-554f-11eb-342f-0358c848c965
# ╟─ba523a0e-554f-11eb-162f-8b6e6434d21c
# ╟─4f335f12-573b-11eb-042c-a97c20dd929d
# ╟─8a710356-573b-11eb-11b0-1b418859bb13
# ╠═be97faee-5532-11eb-1466-15d0f84888cf
# ╟─011d1544-58de-11eb-31bc-fb0262856677
# ╠═3f38303e-58de-11eb-3bb5-ef7da4dfcce3
# ╟─e2f0fef8-584e-11eb-2f0c-49b4cb4009ba
# ╠═bbfb0164-5771-11eb-09c0-8d8bbf8e7434
# ╠═aafcba2a-5750-11eb-19e9-8fa5b1952b54
# ╠═25766a80-583e-11eb-1286-4945ee2b6fdb
# ╟─27af4156-5851-11eb-36ba-3f11e34bee5e
# ╟─a874e446-5851-11eb-0766-17b85ae44f46
# ╠═40bdad12-55fa-11eb-0b00-c57014be1cdf
# ╟─ab3263ae-581b-11eb-022f-217f547efa3a
# ╠═0a6287c6-5819-11eb-2b9c-ebe99da1e82f
# ╟─628964aa-5854-11eb-2d40-45bc01ae2357
# ╠═cdfd18c0-57fd-11eb-2dbb-415d4e27fa5d
# ╠═5c49ed5e-585a-11eb-32d2-0ddecc88d963
# ╠═7d83e592-585a-11eb-2a5d-1f8c8fb2fd8b
# ╟─046db82e-585d-11eb-158b-c760258806ab
# ╟─6ce6509e-5783-11eb-1066-515dfad96fec
# ╟─b69d80da-5856-11eb-1fae-5fdf08297723
# ╟─421e9880-585f-11eb-1a4a-db98dbf494d6
# ╟─3a7b6bbe-5853-11eb-12d0-2d3907b68685
# ╟─441ed93e-5860-11eb-07f0-f70c9720c8b5
# ╟─0298049a-57b4-11eb-0cb2-e3524c90e250
# ╟─870b1224-5860-11eb-3d77-1d6a0bc7f8a6
# ╟─71deb1c0-5843-11eb-315c-b9cee350e560
# ╟─32f264d2-584a-11eb-01ba-3b4ea67003df
# ╟─d27ae6f8-586d-11eb-1ed3-1da566271a73
# ╟─d25069b4-5874-11eb-3876-dd2e4b0cce2a
# ╟─b1ee0492-5874-11eb-35ef-27791afce7a1
# ╠═e70c7750-5863-11eb-38ea-157cc0b19d9b
# ╠═35ce219c-5869-11eb-39f9-577d4de271b1
# ╠═5757f624-5869-11eb-3006-6fd9f81ba58c
# ╟─624f194a-5873-11eb-1ed4-112551856dfe
# ╟─ebf9da62-586a-11eb-0386-7576e50ef520
# ╟─04354736-5877-11eb-0a11-dd87cbdf782e
# ╟─4a51a37e-586b-11eb-2304-a73fbb512158
# ╟─69ca47ba-586b-11eb-18a6-8128dd4670ce
# ╟─3944a45c-5873-11eb-1af2-65ad1dbc48df
# ╠═c4d86ad0-586e-11eb-3296-8f61deff1e47
# ╟─1037e1a6-5872-11eb-0820-bd41a05d1af1
# ╟─f0e013b0-586e-11eb-2457-f917877375cb
# ╟─18c95184-5871-11eb-0c6e-d3e710f51be2
# ╟─362bda12-5871-11eb-3c16-8d53b233a01d
# ╟─41c925c2-5877-11eb-2e1d-af5b5f0cd74a
# ╟─3a56d20a-5875-11eb-03c0-a5b112d19efe
# ╠═3a5cb224-5875-11eb-2c1b-97436009b686
# ╟─3a6569f0-5875-11eb-344d-5bf556e0aa8d
# ╟─3a668812-5875-11eb-326f-87f50db349c8
# ╟─3a784ba6-5875-11eb-1979-7d9a299ea243
# ╟─3a805846-5875-11eb-0f01-071787fe43fc
# ╟─446a6f40-586b-11eb-282a-f94ee14269a2
# ╟─1832d306-5878-11eb-311c-11fabb6bbb2c
# ╠═18391a04-5878-11eb-3287-57163da7c4f8
# ╟─183e589a-5878-11eb-3584-b37c8b96fb45
# ╟─18484de4-5878-11eb-22f5-f37516a22b29
# ╟─184a1dc4-5878-11eb-3513-9fe97c35da4c
# ╟─1854a65c-5878-11eb-2473-b7acbd68e216
# ╟─1855c320-5878-11eb-0468-b76ec811f012
# ╟─b03feb94-587c-11eb-04b3-33363338be39
# ╠═b043fe28-587c-11eb-31a6-d9199b0a3231
# ╟─b045b128-587c-11eb-1064-8166fe875bd9
# ╟─b053d5a2-587c-11eb-0fcf-053648eb60d9
# ╟─b0551278-587c-11eb-174f-cf692bcd0675
# ╟─b060aa6e-587c-11eb-3ac9-5935786e20c1
# ╟─b061db8a-587c-11eb-312a-fd93e66e3039
# ╠═5cfbb91a-5881-11eb-39ed-817b986b9832
# ╠═5d1657a0-5881-11eb-2784-0d213e722e7f
# ╠═5d2bbe10-5881-11eb-3b4c-3984a432b8f1
# ╟─1a70c16a-5886-11eb-188e-317a78df7b25
# ╠═5d41df08-5881-11eb-3abc-6f4480396028
# ╟─5afc977c-5881-11eb-3629-ef6b8f815404
# ╟─4c5d29e0-5887-11eb-13a8-3fc1fc4ff05e
# ╟─dac43802-586a-11eb-3b90-8fbf23bfb42b
# ╟─5ad1d1f4-5881-11eb-2c3c-177e2beef14f
# ╟─3790a728-5887-11eb-0d61-651e924d1035
# ╟─88d86508-5887-11eb-00b8-79cb3b213e22
# ╟─5ae6f7da-5881-11eb-00eb-732d1dfcf26f
# ╟─494121ac-5887-11eb-1264-7155e70d3f0f
# ╟─92df302a-5889-11eb-2eeb-e7122d1d6782
# ╟─9397065a-5889-11eb-0de5-5b56807adc26
# ╟─93bfc128-5889-11eb-3009-5b8ca0ec96d8
# ╟─692663c8-5890-11eb-2667-53cabbb41ef2
# ╟─7d33ca6c-5891-11eb-0f78-d12c4db73a43
# ╟─7d365d0e-5891-11eb-048a-d3cfdbce0aba
# ╟─22af0768-5892-11eb-3954-41099e721288
# ╟─22b4d472-5892-11eb-091f-553428e2dc6a
# ╟─22bf4c40-5892-11eb-3e51-075e4309d973
# ╟─93d3d1dc-5889-11eb-3f54-1319a2e33867
# ╠═9453db7c-5889-11eb-0a4f-63e7ef7bdb6d
# ╟─946796a8-5889-11eb-1ecf-05cc703365a8
# ╟─96746de0-5889-11eb-155b-4961c27f065f
# ╠═968522d4-5889-11eb-2a74-39a374ed38ca
# ╟─b4194c8a-58a7-11eb-18af-ef8859041bd8
# ╟─e20eecfe-58ad-11eb-387c-ddbbbdeeedd1