diff --git a/README.md b/README.md index 3043e6d..2f806f1 100644 --- a/README.md +++ b/README.md @@ -22,17 +22,18 @@ This repository uses a bacterial genome to assess the read accuracy and consensu * [Basecallers tested](#basecallers-tested) * [Method](#method) * [Results/discussion](#resultsdiscussion) - * [Speed](#speed) - * [Total yield](#total-yield) - * [Read identity](#read-identity) - * [Relative read length](#relative-read-length) - * [Assembly identity](#assembly-identity) - * [Read vs assembly identity](#read-vs-assembly-identity) - * [Nanopolish assembly identity](#nanopolish-assembly-identity) - * [Methylation](#methylation) - * [Medaka](#medaka) - * [Training sets](#training-sets) - * [Combining different basecallers](#combining-different-basecallers) + * [Speed](#speed) + * [Total yield](#total-yield) + * [Read identity](#read-identity) + * [Relative read length](#relative-read-length) + * [Assembly identity](#assembly-identity) + * [Read vs assembly identity](#read-vs-assembly-identity) + * [Nanopolish assembly identity](#nanopolish-assembly-identity) + * [Methylation](#methylation) + * [Medaka](#medaka) + * [Combining different basecallers](#combining-different-basecallers) + * [Combining different polishers](#combining-different-polishers) + * [Training sets](#training-sets) * [Conclusions](#conclusions) * [References](#references) @@ -349,7 +350,7 @@ While Nanopolish can correct many of these errors, it would be better if the bas -# Medaka +### Medaka Medaka is trying to solve a similar problem to Nanopolish: improving the consensus sequence accuracy using the alignment of multiple reads. It differs from Nanopolish in two significant ways. First, Medaka uses neural networks where Nanopolish uses HMMs. Second, it uses basecalled reads, not the raw signal ([though this is likely to change in the future](https://nanoporetech.github.io/medaka/future.html)). Here I test Medaka v0.2.0: @@ -359,21 +360,27 @@ While Medaka could improve most assemblies, it was overall less effective than N -### Training sets +### Combining different basecallers -All supervised learning depends on a good training set, and basecalling is no exception. A nice example comes from the rgrgr_r94 model in Scrappie v1.1.0 and v1.1.1. The primary difference between these two versions is that in v1.1.0, only human DNA was used to train the basecaller, whereas v1.1.1 was trained with a mixed set of genomes ([described here](https://github.com/rrwick/Basecalling-comparison/issues/1) by Scrappie author Tim Massingham). I didn't include v1.1.0 in the above plots because it's a superseded version – it's here only to show the difference a training set makes. The difference in read identity is huge, but assembly identity had a subtler improvement: +This section previously looked at how well a combination of Albacore and Chiron reads assemble. The idea was that perhaps two different basecallers can somewhat 'cancel out' each other's systematic error, leading to a better assembly. This was the case with Albacore and Chiron v0.2, but Chiron v0.3 reads assemble so well that combining them with Albacore reads gives no improvement (it actually makes the assembly a bit worse). -

+I don't think this is relevant anymore, so I've removed it. You can see my earlier results in [a past version of this repository](https://github.com/rrwick/Basecalling-comparison/tree/d5ce4455c5c57d15abec1e625cafa56a7eef1a6e) if you're still interested. -### Combining different basecallers +### Combining different polishers + +I tried assembly polishing with both Medaka and Nanopolish (methylation-aware) to see if a joint approach could yield better accuracies. I tried both Medaka followed by Nanopolish and vice versa, but neither combination could improve upon Nanopolish alone: + +

-This section previously looked at how well a combination of Albacore and Chiron reads assemble. The idea was that perhaps two different basecallers can somewhat 'cancel out' each other's systematic error, leading to a better assembly. This was the case with Albacore and Chiron v0.2, but Chiron v0.3 reads assemble so well that combining them with Albacore reads gives no improvement (it actually makes the assembly a bit worse). -I don't think this is relevant anymore, so I've removed it. You can see my earlier results in [a past version of this repository](https://github.com/rrwick/Basecalling-comparison/tree/d5ce4455c5c57d15abec1e625cafa56a7eef1a6e) if you're still interested. +### Training sets + +All supervised learning depends on a good training set, and basecalling is no exception. A nice example comes from the rgrgr_r94 model in Scrappie v1.1.0 and v1.1.1. The primary difference between these two versions is that in v1.1.0, only human DNA was used to train the basecaller, whereas v1.1.1 was trained with a mixed set of genomes ([described here](https://github.com/rrwick/Basecalling-comparison/issues/1) by Scrappie author Tim Massingham). I didn't include v1.1.0 in the above plots because it's a superseded version – it's here only to show the difference a training set makes. The difference in read identity is huge, but assembly identity had a subtler improvement: +

@@ -395,7 +402,7 @@ Scrappie raw v1.3.0 (rgr_r94, rgrgr_r94 and rnnrf_r94 models) also did quite wel Anyone interested in maximising assembly accuracy should be using Nanopolish. It improved all assemblies and took most up to about 99.9% (with the methylation-aware option). If you only care about assembly identity, Nanopolish makes your basecaller choice relatively unimportant. -While Medaka does not improve assemblies as well as Nanopolish, it operates on basecalled reads and requires only a fasta/fastq file, not the raw fast5 files. It may therefore be the best choice for assembly polishing when raw reads are not available. However, [the 'Future directions' section of Medaka's documentation](https://nanoporetech.github.io/medaka/future.html) indicates that signal-level processing may be in its future. Furthermore, Medaka uses neural networks, unlike Nanopolish's HMMs. The authors suggest that just as neural networks have outperformed HMMs in basecallers, they will also prove superior in consensus algorithms. Watch this space! +While Medaka does not improve assemblies as well as Nanopolish, it requires only a fasta/fastq file, not the raw fast5 files. It may therefore be the best choice for assembly polishing when raw reads are not available. However, the ['Future directions' section of Medaka's documentation](https://nanoporetech.github.io/medaka/future.html) indicates that signal-level processing may be in its future. Furthermore, Medaka uses neural networks, unlike Nanopolish's HMMs. The authors suggest that just as neural networks have outperformed HMMs in basecallers, they will also prove superior in consensus algorithms. Watch this space! diff --git a/analysis.sh b/analysis.sh index 8e158e5..cb964fe 100644 --- a/analysis.sh +++ b/analysis.sh @@ -54,6 +54,8 @@ mkdir -p 11_nanopolish_meth mkdir -p 12_nanopolish_meth_data mkdir -p 13_medaka mkdir -p 14_medaka_data +mkdir -p 15_combined_polish +mkdir -p 16_combined_polish_data # Create a table of basic info about each read. python3 "$python_script_dir"/read_table.py 01_raw_fast5 > 04_read_data/read_data.tsv @@ -94,6 +96,18 @@ for f in $read_files; do medaka_assembly_alignment=14_medaka_data/"$set"_medaka.paf medaka_assembly_data=14_medaka_data/"$set"_medaka.tsv + medaka_nanopolish_assembly_dir=15_combined_polish + medaka_nanopolish_assembly=15_combined_polish/"$set"_medaka_nanopolish_meth.fasta + medaka_nanopolish_assembly_pieces=16_combined_polish_data/"$set"_medaka_nanopolish_meth_pieces.fasta + medaka_nanopolish_assembly_alignment=16_combined_polish_data/"$set"_medaka_nanopolish_meth.paf + medaka_nanopolish_assembly_data=16_combined_polish_data/"$set"_medaka_nanopolish_meth.tsv + + nanopolish_medaka_assembly_dir=15_combined_polish + nanopolish_medaka_assembly=15_combined_polish/"$set"_nanopolish_meth_medaka.fasta + nanopolish_medaka_assembly_pieces=16_combined_polish_data/"$set"_nanopolish_meth_medaka_pieces.fasta + nanopolish_medaka_assembly_alignment=16_combined_polish_data/"$set"_nanopolish_meth_medaka.paf + nanopolish_medaka_assembly_data=16_combined_polish_data/"$set"_nanopolish_meth_medaka.tsv + printf "\n\n\n\n" echo "NORMALISE READ HEADERS: "$set echo "--------------------------------------------------------------------------------" @@ -175,4 +189,43 @@ for f in $read_files; do python3 "$python_script_dir"/read_length_identity.py $medaka_assembly_pieces $medaka_assembly_alignment > $medaka_assembly_data rm $medaka_assembly_pieces $medaka_assembly_alignment + # printf "\n\n\n\n" + # echo "NANOPOLISH (METHYLATION-AWARE) OF MEDAKA ASSEMBLY: "$set + # echo "--------------------------------------------------------------------------------" + # python3 "$python_script_dir"/nanopolish_slurm_wrapper.py $medaka_assembly $all_reads_fixed_names $raw_fast5_dir $medaka_nanopolish_assembly_dir $nanopolish_exec_dir $threads meth + # rm "$all_reads_fixed_names".index* + # rm "$medaka_assembly".fai + + # printf "\n\n\n\n" + # echo "ASSESS MEDAKA THEN NANOPOLISH (METHYLATION-AWARE) ASSEMBLY: "$set + # echo "--------------------------------------------------------------------------------" + # python3 "$python_script_dir"/chop_up_assembly.py $medaka_nanopolish_assembly 10000 > $medaka_nanopolish_assembly_pieces + # minimap2 -x map10k -t $threads -c reference.fasta $medaka_nanopolish_assembly_pieces > $medaka_nanopolish_assembly_alignment + # python3 "$python_script_dir"/read_length_identity.py $medaka_nanopolish_assembly_pieces $medaka_nanopolish_assembly_alignment > $medaka_nanopolish_assembly_data + # rm $medaka_nanopolish_assembly_pieces $medaka_nanopolish_assembly_alignment + + # printf "\n\n\n\n" + # echo "MEDAKA OF NANOPOLISH (METHYLATION-AWARE) ASSEMBLY: "$set + # echo "--------------------------------------------------------------------------------" + # if [[ $all_reads_fixed_names = *"fastq.gz" ]]; then + # temp_reads="$nanopolish_medaka_assembly_dir"/"$set".fastq + # else + # temp_reads="$nanopolish_medaka_assembly_dir"/"$set".fasta + # fi + # gunzip -c "$all_reads_fixed_names" > $temp_reads + # source $medaka + # medaka_consensus -i $temp_reads -d $assembly -o "$nanopolish_medaka_assembly_dir"/"$set"_nanopolish_medaka -p $pomoxis -t $threads + # deactivate + # cp "$nanopolish_medaka_assembly_dir"/"$set"_nanopolish_medaka/consensus.fasta "$nanopolish_medaka_assembly" + # rm $temp_reads + # rm -r "$nanopolish_medaka_assembly_dir"/"$set"_nanopolish_medaka + + # printf "\n\n\n\n" + # echo "ASSESS MEDAKA ASSEMBLY: "$set + # echo "--------------------------------------------------------------------------------" + # python3 "$python_script_dir"/chop_up_assembly.py $nanopolish_medaka_assembly 10000 > $nanopolish_medaka_assembly_pieces + # minimap2 -x map10k -t $threads -c reference.fasta $nanopolish_medaka_assembly_pieces > $nanopolish_medaka_assembly_alignment + # python3 "$python_script_dir"/read_length_identity.py $nanopolish_medaka_assembly_pieces $nanopolish_medaka_assembly_alignment > $nanopolish_medaka_assembly_data + # rm $nanopolish_medaka_assembly_pieces $nanopolish_medaka_assembly_alignment + done diff --git a/images/polishing_methods.png b/images/polishing_methods.png new file mode 100644 index 0000000..c97f78f Binary files /dev/null and b/images/polishing_methods.png differ diff --git a/nanopolish_slurm_wrapper.py b/nanopolish_slurm_wrapper.py index c817a3a..320d640 100644 --- a/nanopolish_slurm_wrapper.py +++ b/nanopolish_slurm_wrapper.py @@ -45,7 +45,10 @@ def main(): set_name = assembly_filename.split('/')[-1].split('.fasta')[0] print('\nPreparing to run Nanopolish for ' + set_name) - final_assembly = ('../' + set_name + '.fasta').replace('_assembly.fasta', '_nanopolish.fasta') + if assembly_filename.endswith('medaka.fasta'): + final_assembly = ('../' + set_name + '.fasta').replace('medaka.fasta', 'medaka_nanopolish.fasta') + else: + final_assembly = ('../' + set_name + '.fasta').replace('_assembly.fasta', '_nanopolish.fasta') if methylation_aware: final_assembly = final_assembly.replace('_nanopolish.fasta', '_nanopolish_meth.fasta') diff --git a/plot_results.R b/plot_results.R index 9e273f2..41c9820 100644 --- a/plot_results.R +++ b/plot_results.R @@ -409,3 +409,84 @@ blank <- rectGrob(gp=gpar(col="white")) scrappie_comparison_plot <- grid.arrange(p1, blank, p2, ncol=3, widths=c(0.425, 0.15, 0.425)) # ggsave(scrappie_comparison_plot, file='plots/scrappie_comparison.pdf', width = 6, height = 4) + + + + + + + + + + +# The following code is for a violin plot comparing different polishing strategies. +basecaller <- "Albacore v2.1.10" +no_spaces <- gsub(" ", "_", basecaller) + +polishing_names <- c(paste(basecaller, "(nopolishing)"), + paste(basecaller, "+Medaka"), + paste(basecaller, "+Nanopolish"), + paste(basecaller, "+Medaka +Nanopolish"), + paste(basecaller, "+Nanopolish +Medaka")) +polishing_labels <- gsub(" ", "\n", polishing_names, fixed=TRUE) +polishing_labels <- gsub("(nopolishing)", "(no polishing)", polishing_labels, fixed=TRUE) +polishing_colours <- c("#CCCCCC", "#4F84CC", "#DD616C", "#846DC2", "#AB61BA") +names(polishing_colours) <- polishing_names +polishing_fill_scale <- scale_fill_manual(name = "Polishing", values = polishing_colours) + +no_polish_data_filename <- paste("results/", tolower(no_spaces), "_assembly.tsv", sep="") +medaka_data_filename <- paste("results/", tolower(no_spaces), "_medaka.tsv", sep="") +nanopolish_data_filename <- paste("results/", tolower(no_spaces), "_nanopolish_meth.tsv", sep="") +medaka_nanopolish_data_filename <- paste("results/", tolower(no_spaces), "_medaka_nanopolish_meth.tsv", sep="") +nanopolish_medaka_data_filename <- paste("results/", tolower(no_spaces), "_nanopolish_meth_medaka.tsv", sep="") + +length_column <- paste("Length_", no_spaces, sep="") +rel_length_column <- paste("Rel_len_", no_spaces, sep="") + +basecaller_identities <- c() + +identity_column <- paste("Identity_", no_spaces, "_no_polish", sep="") +no_polish_data <- load_tsv_data(no_polish_data_filename, c("Name", length_column, identity_column, rel_length_column)) +basecaller_identities <- c(basecaller_identities, identity_column) + +identity_column <- paste("Identity_", no_spaces, "_medaka", sep="") +medaka_data <- load_tsv_data(medaka_data_filename, c("Name", length_column, identity_column, rel_length_column)) +basecaller_identities <- c(basecaller_identities, identity_column) + +identity_column <- paste("Identity_", no_spaces, "_nanopolish", sep="") +nanopolish_data <- load_tsv_data(nanopolish_data_filename, c("Name", length_column, identity_column, rel_length_column)) +basecaller_identities <- c(basecaller_identities, identity_column) + +identity_column <- paste("Identity_", no_spaces, "_medaka_nanopolish", sep="") +medaka_nanopolish_data <- load_tsv_data(medaka_nanopolish_data_filename, c("Name", length_column, identity_column, rel_length_column)) +basecaller_identities <- c(basecaller_identities, identity_column) + +identity_column <- paste("Identity_", no_spaces, "_nanopolish_medaka", sep="") +nanopolish_medaka_data <- load_tsv_data(nanopolish_medaka_data_filename, c("Name", length_column, identity_column, rel_length_column)) +basecaller_identities <- c(basecaller_identities, identity_column) + +polish_data <- data.frame(Name = numeric()) +polish_data <- merge(polish_data, no_polish_data, by=1, all=TRUE) +polish_data <- merge(polish_data, medaka_data, by=1, all=TRUE) +polish_data <- merge(polish_data, nanopolish_data, by=1, all=TRUE) +polish_data <- merge(polish_data, medaka_nanopolish_data, by=1, all=TRUE) +polish_data <- merge(polish_data, nanopolish_medaka_data, by=1, all=TRUE) + +assembly_lengths <- polish_data[grepl("Length_", names(polish_data))] +polish_data["Length"] <- round(apply(assembly_lengths, 1, median, na.rm = TRUE)) + +polish_identities <- polish_data[,c("Name", "Length", basecaller_identities)] +colnames(polish_identities) <- c("Name", "Length", polishing_names) +polish_identities <- melt(polish_identities, id=c("Name", "Length")) +colnames(polish_identities) <- c("Read_name", "Length", "Polishing", "Identity") + +polishing_plot <- ggplot(polish_identities, aes(x = Polishing, y = Identity, weight = Length, fill = Polishing)) + + geom_violin(draw_quantiles = c(0.5), bw=0.06, width=1.1) + + polishing_fill_scale + my_theme + guides(fill=FALSE) + + scale_y_continuous(expand = c(0, 0), breaks = seq(0, 100, 0.1), minor_breaks = seq(0, 100, 0.05), labels = scales::unit_format("%")) + + scale_x_discrete(labels=polishing_labels) + + coord_cartesian(ylim=c(99.2, 100)) + + labs(title = "", x = "", y = "assembly identity") +polishing_plot +ggsave(polishing_plot, file='plots/polishing_methods.pdf', width = 4.75, height = 4) + diff --git a/results/albacore_v2.1.10_medaka_nanopolish_meth.tsv b/results/albacore_v2.1.10_medaka_nanopolish_meth.tsv new file mode 100644 index 0000000..677b85b --- /dev/null +++ b/results/albacore_v2.1.10_medaka_nanopolish_meth.tsv @@ -0,0 +1,552 @@ +Name Length Identity Relative length +1 10000 99.89005497251374 99.98000399920016 +10 10000 99.96001199640108 99.98000399920016 +100 10000 99.94001799460162 100.0 +101 10000 99.94002399040384 99.96001599360255 +102 10000 99.91004497751125 99.98000399920016 +103 10000 99.94001199760048 99.9900009999 +104 10000 99.94001199760048 100.02000400080016 +105 10000 99.94000599940006 100.03000900270081 +106 10000 99.88004798080767 99.9900009999 +107 10000 99.93004197481511 99.94003597841295 +108 10000 99.96000399960003 100.02000400080016 +109 10000 99.87007795322806 99.9900009999 +11 10000 99.99 100.0100010001 +110 10000 99.89003299010297 100.02000400080016 +111 10000 99.96001199640108 99.98000399920016 +112 10000 99.9000399840064 100.0 +113 10000 99.85014985014985 99.94003597841295 +114 10000 99.89008792965627 99.94003597841295 +115 10000 99.93002099370189 100.0100010001 +116 10000 99.95001999200319 99.97000899730081 +117 10000 99.91005396761943 99.96001599360255 +118 10000 99.95001499550135 99.98000399920016 +119 10000 99.91001799640073 100.02000400080016 +12 10000 99.9000399840064 99.9900009999 +120 10000 99.89003299010297 100.03000900270081 +121 10000 99.9000499750125 99.96001599360255 +122 10000 99.95000499950005 100.03000900270081 +123 10000 99.95001499550135 99.98000399920016 +124 10000 99.93002099370189 99.9900009999 +125 10000 99.89003299010297 100.0100010001 +126 10000 99.91003598560576 100.0 +127 10000 99.94000599940006 99.9900009999 +128 10000 99.91004497751125 99.98000399920016 +129 10000 99.95000499950005 100.03000900270081 +13 10000 99.93002099370189 100.0 +130 10000 99.9500099980004 100.0100010001 +131 10000 99.87010391686651 99.95002498750625 +132 10000 99.92003198720512 99.98000399920016 +133 10000 99.880059970015 99.98000399920016 +134 10000 99.96 100.04001600640257 +135 10000 99.86004198740378 100.05002501250625 +136 10000 99.92003198720512 99.9900009999 +137 10000 99.92000799920008 100.03000900270081 +138 10000 99.95000499950005 100.03000900270081 +139 10000 99.88008394124112 99.95002498750625 +14 10000 99.91003598560576 100.0 +140 10000 99.93001399720056 100.0100010001 +141 10000 99.95001499550135 99.98000399920016 +142 10000 99.95000499950005 100.03000900270081 +143 10000 99.91002699190243 99.9900009999 +144 10000 99.86998699869987 99.98999699909973 +145 10000 99.9000399840064 100.0 +146 10000 99.93001399720056 100.0100010001 +147 10000 99.88008394124112 99.96001599360255 +148 10000 99.88003598920324 100.04001600640257 +149 10000 99.96000799840031 100.0 +15 10000 99.9000299910027 100.02000400080016 +150 10000 99.95000499950005 100.02000400080016 +151 10000 99.8800719568259 99.98000399920016 +152 10000 99.9000399840064 100.0100010001 +153 10000 99.9000599640216 99.96001599360255 +154 10000 99.91003598560576 99.97000899730081 +155 10000 99.94002399040384 99.98000399920016 +156 10000 99.91002699190243 99.9900009999 +157 10000 99.9900009999 99.9900009999 +158 10000 99.93001399720056 100.0100010001 +159 10000 99.93002099370189 99.9900009999 +16 10000 99.91006295593085 99.94003597841295 +160 10000 99.8900769461377 99.96001599360255 +161 10000 99.9400299850075 99.96001599360255 +162 10000 99.96000399960003 100.0 +163 10000 99.96000799840031 100.0 +164 10000 99.94002399040384 99.98000399920016 +165 10000 99.93001399720056 100.0100010001 +166 10000 99.85005997600959 100.0100010001 +167 10000 99.91001799640073 100.02000400080016 +168 10000 99.93002798880448 99.9900009999 +169 10000 99.92002399280216 99.9900009999 +17 10000 99.94000599940006 100.03000900270081 +170 10000 99.93003498250874 99.96001599360255 +171 10000 99.92002399280216 100.02000400080016 +172 10000 99.93002099370189 100.0100010001 +173 10000 99.9000199960008 100.03000900270081 +174 10000 99.98000199980002 100.0 +175 10000 99.95000499950005 100.02000400080016 +176 10000 99.89003299010297 100.02000400080016 +177 10000 99.94002399040384 99.98000399920016 +178 10000 99.91000899910009 100.04001600640257 +179 10000 99.86005597760895 100.0 +18 10000 99.92000799920008 100.04001600640257 +180 10000 99.93003498250874 99.97000899730081 +181 10000 99.93002798880448 99.98000399920016 +182 10000 99.96000399960003 100.0100010001 +183 10000 99.88008394124112 99.96001599360255 +184 10000 99.89002199560088 100.06003602161297 +185 10000 99.89004398240704 100.02000400080016 +186 10000 99.91002699190243 100.02000400080016 +187 10000 99.9500099980004 100.0 +188 10000 99.95001999200319 99.97000899730081 +189 10000 99.93002798880448 99.98000399920016 +19 10000 99.93002798880448 99.9900009999 +190 10000 99.9000399840064 100.0 +191 10000 99.96001199640108 99.98000399920016 +192 10000 99.9000499750125 99.97000899730081 +193 10000 99.87005197920831 100.02000400080016 +194 10000 99.89005497251374 99.9900009999 +195 10000 99.94999499949995 100.02000800320128 +196 10000 99.92003998000999 99.98000399920016 +197 10000 99.84007996001999 100.04001600640257 +198 10000 99.9000499750125 99.98000399920016 +199 10000 99.91004497751125 99.98000399920016 +2 10000 99.9000299910027 100.0100010001 +20 10000 99.93002099370189 100.0100010001 +200 10000 99.92001599680064 100.03000900270081 +201 10000 99.94001199760048 100.0100010001 +202 10000 99.95000499950005 100.03000900270081 +203 10000 99.91005396761943 99.97000899730081 +204 10000 99.96001199640108 99.98000399920016 +205 10000 99.91003598560576 100.0100010001 +206 10000 98.68013198680131 101.26582278481013 +207 10000 99.9500099980004 100.0 +208 10000 99.95 100.02000400080016 +209 10000 99.97000599880025 99.9900009999 +21 10000 99.89004398240704 100.0100010001 +210 10000 99.97000899730081 99.97000899730081 +211 10000 99.9500099980004 100.0 +212 10000 99.36343743783569 99.52229299363057 +213 10000 99.86005597760895 100.02000400080016 +214 10000 99.89005497251374 99.9900009999 +215 10000 99.89006596042374 99.9900009999 +216 10000 99.92000799920008 100.04001600640257 +217 10000 99.95001499550135 99.98000399920016 +218 10000 99.89006596042374 99.97000899730081 +219 10000 99.87002599480104 100.0 +22 10000 99.94001799460162 99.9900009999 +220 10000 99.92000799920008 100.03000900270081 +221 10000 99.89005497251374 99.98000399920016 +222 10000 99.89001099890011 100.07004903432403 +223 10000 99.85001499850016 100.0 +224 10000 99.93000699930008 100.02000400080016 +225 10000 99.94001199760048 100.02000400080016 +226 10000 99.96000799840031 99.9900009999 +227 10000 99.96001199640108 99.98000399920016 +228 10000 99.85005997600959 100.03000900270081 +229 10000 99.9500099980004 100.0 +23 10000 99.89006596042374 99.9900009999 +230 10000 99.88003598920324 100.05002501250625 +231 10000 99.91004497751125 99.97000899730081 +232 10000 99.84004798560431 100.02000400080016 +233 10000 99.89005497251374 99.97000899730081 +234 10000 99.96000799840031 99.9900009999 +235 10000 99.88001199880011 100.05002501250625 +236 10000 99.92001599680064 100.0100010001 +237 10000 99.89005497251374 99.9900009999 +238 10000 99.93000699930008 100.0 +239 10000 99.96000799840031 99.9900009999 +24 10000 99.88003598920324 100.03000900270081 +240 10000 99.88004798080767 100.0 +241 10000 99.88008394124112 99.96001599360255 +242 10000 99.89005497251374 100.0 +243 10000 99.71034758290052 99.92006394884093 +244 10000 99.89006596042374 99.98000399920016 +245 10000 99.9000299910027 100.0100010001 +246 10000 99.86006996501749 99.9900009999 +247 10000 99.92003198720512 99.98000399920016 +248 10000 99.89004763247553 100.04001600640257 +249 10000 99.90007993605116 99.930048965724 +25 10000 99.9500099980004 100.0 +250 10000 99.89006596042374 99.97000899730081 +251 10000 99.9500099980004 99.9900009999 +252 10000 99.89006596042374 99.97000899730081 +253 10000 99.97000899730081 99.97000899730081 +254 10000 99.9500099980004 100.0 +255 10000 99.94001799460162 99.9900009999 +256 10000 99.94000599940006 100.04001600640257 +257 10000 99.91002699190243 100.0100010001 +258 10000 99.94001199760048 100.0100010001 +259 10000 99.9000499750125 99.9900009999 +26 10000 99.93001399720056 100.02000400080016 +260 10000 99.89001099890011 100.05002501250625 +261 10000 99.92001599680064 100.0100010001 +262 10000 99.92001599680064 100.02000400080016 +263 10000 99.86004198740378 100.04001600640257 +264 10000 99.9000399840064 100.0 +265 10000 99.9000499750125 100.0 +266 10000 99.98000399920016 99.98000399920016 +267 10000 99.89005497251374 99.98000399920016 +268 10000 99.95001999200319 99.96001599360255 +269 10000 99.92003998000999 99.98000399920016 +27 10000 99.880059970015 99.9900009999 +270 10000 99.89008792965627 99.94003597841295 +271 10000 99.9000199960008 100.04001600640257 +272 10000 99.9000299910027 99.9900009999 +273 10000 99.87002599480104 100.05002501250625 +274 10000 99.96001199640108 99.98000399920016 +275 10000 99.9000599640216 99.97000899730081 +276 10000 99.89006596042374 99.95002498750625 +277 10000 99.93002099370189 100.0 +278 10000 99.97000299970003 100.0 +279 10000 99.91001799640073 100.0 +28 10000 99.89003299010297 100.05002501250625 +280 10000 99.86012588670197 99.95002498750625 +281 10000 99.97000299970003 99.9900009999 +282 10000 99.89004398240704 100.0100010001 +283 10000 99.95000499950005 100.02000400080016 +284 10000 99.87007795322806 99.98000399920016 +285 10000 99.9500099980004 100.0100010001 +286 10000 99.86008394963022 99.9900009999 +287 10000 99.92001599680064 100.03000900270081 +288 10000 99.9000399840064 99.9900009999 +289 10000 99.9500099980004 99.9900009999 +29 10000 99.91005396761943 99.94003597841295 +290 10000 99.89004398240704 100.0100010001 +291 10000 99.92001599680064 100.04001600640257 +292 10000 99.91001799640073 100.0100010001 +293 10000 99.79014689717198 100.03000900270081 +294 10000 99.80009995002499 99.98000399920016 +295 10000 99.93004197481511 99.95002498750625 +296 10000 99.93001399720056 100.0100010001 +297 10000 99.93002798880448 99.98000399920016 +298 10000 99.96000799840031 100.0 +299 10000 99.93002099370189 100.0 +3 10000 99.95001999200319 99.97000899730081 +30 10000 99.93003498250874 99.97000899730081 +300 10000 99.88003598920324 100.02000400080016 +301 10000 99.96000799840031 99.9900009999 +302 10000 99.96000799840031 100.0 +303 10000 99.8900769461377 99.95002498750625 +304 10000 99.91003598560576 99.9900009999 +305 10000 99.96001199640108 99.98000399920016 +306 10000 99.92002399280216 99.9900009999 +307 10000 99.91004497751125 99.97000899730081 +308 10000 99.8800719568259 99.9900009999 +309 10000 99.89004398240704 100.0 +31 10000 99.90007993605116 99.930048965724 +310 10000 99.95000499950005 100.03000900270081 +311 10000 99.94001199760048 100.0100010001 +312 10000 99.97000299970003 100.0100010001 +313 10000 99.86012588670197 99.930048965724 +314 10000 99.91005396761943 99.97000899730081 +315 10000 99.93002798880448 99.9900009999 +316 10000 99.8800719568259 99.97000899730081 +317 10000 99.8900769461377 99.94003597841295 +318 10000 99.93000699930008 100.04001600640257 +319 10000 99.95001499550135 99.9900009999 +32 10000 99.9000199960008 100.05002501250625 +320 10000 99.9000599640216 99.97000899730081 +321 10000 99.95000499950005 100.02000400080016 +322 10000 99.92004797121727 99.95002498750625 +323 10000 99.95000499950005 100.0100010001 +324 10000 99.92003998000999 99.97000899730081 +325 10000 99.93001399720056 100.0100010001 +326 10000 99.93002798880448 99.98000399920016 +327 10000 99.9000399840064 100.0100010001 +328 10000 99.94001799460162 99.98000399920016 +329 10000 99.89003299010297 100.04001600640257 +33 10000 99.930048965724 99.930048965724 +330 10000 99.96000799840031 100.0 +331 10000 99.91003598560576 99.9900009999 +332 10000 99.92003198720512 99.97000899730081 +333 10000 99.75039936102236 99.89012086704625 +334 10000 99.93004197481511 99.95002498750625 +335 10000 99.95000499950005 100.02000400080016 +336 10000 99.92002399280216 100.0100010001 +337 10000 99.97000899730081 99.97000899730081 +338 10000 99.89002199560088 100.02000400080016 +339 10000 99.87006496751624 100.0 +34 10000 99.85013487860925 99.95002498750625 +340 10000 99.98000199980002 100.0 +341 10000 99.86006996501749 99.9900009999 +342 10000 99.89006596042374 99.96001599360255 +343 10000 99.95001999200319 99.97000899730081 +344 10000 99.9000499750125 99.98000399920016 +345 10000 99.92000799920008 100.05002501250625 +346 10000 99.96000399960003 100.0 +347 10000 99.94001199760048 99.9900009999 +348 10000 99.94002399040384 99.96001599360255 +349 10000 99.9000299910027 100.0100010001 +35 10000 99.9000499750125 100.0 +350 10000 99.89008792965627 99.94003597841295 +351 10000 99.8700389883035 100.04001600640257 +352 10000 99.94001199760048 100.0100010001 +353 10000 99.94 100.04001600640257 +354 10000 99.97000899730081 99.97000899730081 +355 10000 99.89006596042374 99.98000399920016 +356 10000 99.9500099980004 100.0 +357 10000 99.94001199760048 100.0 +358 10000 99.96000799840031 100.0 +359 10000 99.8900769461377 99.96001599360255 +36 10000 99.9000599640216 99.98000399920016 +360 10000 99.92003998000999 99.96001599360255 +361 10000 99.89003299010297 100.0100010001 +362 10000 99.91003598560576 99.9900009999 +363 10000 99.88008394124112 99.95002498750625 +364 10000 99.86004198740378 100.04001600640257 +365 10000 99.91006295593085 99.94003597841295 +366 10000 99.95001999200319 99.97000899730081 +367 10000 99.9400299850075 99.95002498750625 +368 10000 99.87002599480104 100.05002501250625 +369 10000 99.81011393164101 99.98000399920016 +37 10000 99.94001199760048 100.02000400080016 +370 10000 99.87006496751624 100.0100010001 +371 10000 99.91003598560576 99.9900009999 +372 10000 99.91001799640073 100.03000900270081 +373 10000 99.92003198720512 99.9900009999 +374 10000 99.92003998000999 99.95002498750625 +375 10000 99.85001499850016 100.07004903432403 +376 10000 99.97000299970003 100.0100010001 +377 10000 99.89005497251374 99.9900009999 +378 10000 99.9000299910027 100.02000400080016 +379 10000 99.8900769461377 99.95002498750625 +38 10000 99.85008994603238 100.0 +380 10000 99.94001199760048 100.0 +381 10000 99.95001999200319 99.97000899730081 +382 10000 99.92002399280216 100.0 +383 10000 99.93002798880448 99.98000399920016 +384 10000 99.93001399720056 100.0 +385 10000 99.8800719568259 99.97000899730081 +386 10000 99.89005497251374 99.9900009999 +387 10000 99.96000799840031 99.9900009999 +388 10000 99.92003998000999 99.97000899730081 +389 10000 99.96000399960003 100.0 +39 10000 99.9000299910027 100.0100010001 +390 10000 99.95001499550135 99.97000899730081 +391 10000 99.91000899910009 100.03000900270081 +392 10000 99.96000399960003 99.9900009999 +393 10000 99.96000399960003 100.0100010001 +394 10000 99.86012588670197 99.92006394884093 +395 10000 99.93001399720056 100.02000400080016 +396 10000 99.87007795322806 99.98000399920016 +397 10000 99.93002099370189 99.9900009999 +398 10000 99.97000299970003 100.0100010001 +399 10000 99.91002699190243 100.0100010001 +4 10000 99.91001799640073 100.0100010001 +40 10000 99.9500099980004 99.99 +400 10000 99.96000399960003 100.0100010001 +401 10000 99.95002498750625 99.95002498750625 +402 10000 99.94001799460162 99.9900009999 +403 10000 99.91004497751125 99.98000399920016 +404 10000 99.87002599480104 100.03000900270081 +405 10000 99.93001399720056 100.0100010001 +406 10000 99.9500099980004 100.0 +407 10000 99.9500099980004 100.0100010001 +408 10000 99.87005197920831 100.03000900270081 +409 10000 99.9000499750125 99.9900009999 +41 10000 99.96000799840031 100.0 +410 10000 99.93003498250874 99.97000899730081 +411 10000 99.8900769461377 99.96001599360255 +412 10000 99.95001499550135 99.9900009999 +413 10000 99.9000399840064 99.98000399920016 +414 10000 99.95 100.03000900270081 +415 10000 99.91006295593085 99.95002498750625 +416 10000 99.92001599680064 100.02000400080016 +417 10000 99.96000799840031 100.0 +418 10000 99.91003598560576 100.0 +419 10000 99.9500099980004 100.0100010001 +42 10000 99.92002399280216 100.0 +420 10000 99.94000599940006 100.02000400080016 +421 10000 99.93001399720056 100.0100010001 +422 10000 99.95001999200319 99.97000899730081 +423 10000 99.94001799460162 99.9900009999 +424 10000 99.87009093634455 99.94003597841295 +425 10000 99.95000499950005 100.03000900270081 +426 10000 99.9000499750125 99.9900009999 +427 10000 99.94001199760048 100.02000400080016 +428 10000 99.85013487860925 99.95002498750625 +429 10000 99.95 100.0100010001 +43 10000 99.9500099980004 100.0 +430 10000 99.91002699190243 100.0100010001 +431 10000 99.98000399920016 99.98000399920016 +432 10000 99.9000399840064 100.0100010001 +433 10000 99.89004398240704 100.0100010001 +434 10000 99.98000399920016 99.98000399920016 +435 10000 99.93002798880448 99.98000399920016 +436 10000 99.85008994603238 100.0 +437 10000 99.880059970015 100.0100010001 +438 10000 99.9000499750125 99.9900009999 +439 10000 99.92002399280216 99.9900009999 +44 10000 99.86009793144798 99.97000899730081 +440 10000 99.82021574111067 99.930048965724 +441 10000 99.9000299910027 100.02000400080016 +442 10000 99.91 100.06003602161297 +443 10000 99.93000699930008 100.03000900270081 +444 10000 99.9000499750125 99.98000399920016 +445 10000 99.85010492655141 99.95002498750625 +446 10000 99.97000599880025 99.9900009999 +447 10000 99.87006496751624 100.0100010001 +448 10000 99.94002399040384 99.96001599360255 +449 10000 99.91004497751125 99.9900009999 +45 10000 99.92003198720512 99.98000399920016 +450 10000 99.94002399040384 99.98000399920016 +451 10000 99.91002699190243 100.02000400080016 +452 10000 99.89008792965627 99.95002498750625 +453 10000 99.91005396761943 99.95002498750625 +454 10000 99.97000599880025 99.9900009999 +455 10000 99.98000199980002 100.0 +456 10000 99.94001799460162 99.9900009999 +457 10000 99.93 100.05002501250625 +458 10000 99.9000199960008 100.0 +459 10000 99.93000699930008 100.03001200480192 +46 10000 99.94001199760048 100.0 +460 10000 99.86009793144798 99.9900009999 +461 10000 99.82008995502248 100.0 +462 10000 99.93001399720056 100.0 +463 10000 99.89003299010297 100.03000900270081 +464 10000 99.96000799840031 100.0 +465 10000 99.89003299010297 100.03000900270081 +466 10000 99.95002498750625 99.95002498750625 +467 10000 99.87009093634455 99.94003597841295 +468 10000 99.93004197481511 99.95002498750625 +469 10000 99.91002699190243 100.0 +47 10000 99.91003598560576 99.9900009999 +470 10000 99.90006995103428 99.96001599360255 +471 10000 99.9000399840064 100.0 +472 10000 99.93001399720056 100.02000400080016 +473 10000 99.98000199980002 100.0 +474 10000 99.8801079028874 99.94003597841295 +475 10000 99.88004798080767 100.0100010001 +476 10000 99.91000899910009 100.06003602161297 +477 10000 99.92001599680064 100.0100010001 +478 10000 99.79014689717198 100.0100010001 +479 10000 99.9000299910027 100.0100010001 +48 10000 99.91002699190243 100.0100010001 +480 10000 99.89004398240704 100.02000400080016 +481 10000 99.87007795322806 99.97000899730081 +482 10000 99.9000399840064 100.02000400080016 +483 10000 99.95001499550135 99.98000399920016 +484 10000 99.89006596042374 99.97000899730081 +485 10000 99.88003598920324 100.04001600640257 +486 10000 99.91004497751125 99.98000399920016 +487 10000 99.91003598560576 99.97000899730081 +488 10000 99.92002399280216 100.0 +489 10000 99.91003598560576 99.9900009999 +49 10000 99.89004398240704 100.0100010001 +490 10000 99.8800719568259 99.98000399920016 +491 10000 99.86009793144798 99.97000899730081 +492 10000 99.86005597760895 100.02000400080016 +493 10000 99.88003598920324 100.0100010001 +494 10000 99.96001199640108 99.98000399920016 +495 10000 99.92003198720512 99.98000399920016 +496 10000 99.90006995103428 99.95002498750625 +497 10000 99.93003498250874 99.96001599360255 +498 10000 99.96 100.0 +499 10000 99.93001399720056 100.0 +5 10000 99.9000199960008 100.05002501250625 +50 10000 99.9000499750125 99.9900009999 +500 10000 99.94001199760048 100.02000400080016 +501 10000 99.85007496251875 100.02000400080016 +502 10000 99.96000799840031 99.9900009999 +503 10000 99.88003598920324 100.03000900270081 +504 10000 99.91001799640073 100.02000400080016 +505 10000 99.9000499750125 99.98000399920016 +506 10000 99.91000899910009 100.03000900270081 +507 10000 99.92003998000999 99.98000399920016 +508 10000 99.89005497251374 99.9900009999 +509 10000 99.97 100.02000400080016 +51 10000 99.830220713073 99.89012086704625 +510 10000 99.91006295593085 99.95002498750625 +511 10000 99.92 100.02000800320128 +512 10000 99.90006995103428 99.96001599360255 +513 10000 99.92002399280216 100.0 +514 10000 99.9000499750125 99.98000399920016 +515 10000 99.9000099990001 100.04001600640257 +516 10000 99.96001199640108 99.97000899730081 +517 10000 99.94 100.04001600640257 +518 10000 99.9500099980004 99.9900009999 +519 10000 99.9000599640216 99.96001599360255 +52 10000 99.97000299970003 100.0 +520 10000 99.86005597760895 100.03000900270081 +521 10000 99.92001599680064 100.0 +522 10000 99.89003299010297 100.0100010001 +523 10000 99.94001799460162 100.0 +524 10000 99.96000399960003 100.0 +525 10000 99.9000499750125 99.98000399920016 +526 10000 99.91004497751125 99.98000399920016 +527 10000 99.88004798080767 100.0100010001 +528 10000 99.9000199960008 100.03000900270081 +529 10000 99.92003198720512 99.98000399920016 +53 10000 99.87012987012987 99.92006394884093 +530 10000 99.89004398240704 100.0 +531 10000 99.86006996501749 99.9900009999 +532 10000 99.92001599680064 100.02000400080016 +533 10000 99.93003498250874 99.96001599360255 +534 10000 99.78035143769968 99.89012086704625 +535 10000 99.92003198720512 99.9900009999 +536 10000 99.86004198740378 100.05002501250625 +537 10000 99.97000599880025 99.98000399920016 +538 10000 99.96000799840031 100.0 +539 10000 99.93001368301026 100.0100010001 +54 10000 99.9000599640216 99.96001599360255 +540 10000 99.91003598560576 99.9900009999 +541 10000 99.93003498250874 99.96001599360255 +542 10000 99.85008994603238 99.9900009999 +543 10000 99.91004497751125 99.98000399920016 +544 10000 99.8102845731403 99.87016878058525 +545 10000 99.84022368683843 99.87016878058525 +546 10000 99.94002399040384 99.96001599360255 +547 10000 99.94001199760048 100.0100010001 +548 10000 99.98000590929236 99.98000399920016 +549 10000 99.9000599640216 99.97000899730081 +55 10000 99.94002399040384 99.96001599360255 +550 10000 99.89006596042374 99.97000899730081 +551 10000 99.9000599640216 99.95002498750625 +56 10000 99.87006496751624 100.0 +57 10000 99.94000599940006 100.02000400080016 +58 10000 99.8800719568259 99.98000399920016 +59 10000 99.89006596042374 99.9900009999 +6 10000 99.96000799840031 99.9900009999 +60 10000 99.91002699190243 100.03000900270081 +61 10000 99.93002798880448 99.9900009999 +62 10000 99.94001799460162 100.0 +63 10000 99.96000399960003 100.0100010001 +64 10000 99.89002199560088 100.04001600640257 +65 10000 99.91004497751125 99.98000399920016 +66 10000 99.9000199960008 100.0 +67 10000 99.9500099980004 100.0100010001 +68 10000 99.91004497751125 99.97000899730081 +69 10000 99.97 100.0100010001 +7 10000 99.9000099990001 100.05002501250625 +70 10000 99.9000399840064 100.0100010001 +71 10000 99.83020375549341 99.91008092716555 +72 10000 99.97 100.03000900270081 +73 10000 99.92003198720512 99.9900009999 +74 10000 99.880059970015 100.0100010001 +75 10000 99.92002399280216 99.9900009999 +76 10000 99.92003198720512 99.9900009999 +77 10000 99.93000699930008 100.04001600640257 +78 10000 99.92001599680064 100.04001600640257 +79 10000 99.91004497751125 99.98000399920016 +8 10000 99.91004497751125 99.98000399920016 +80 10000 99.98000199980002 100.0 +81 10000 99.9000599640216 99.97000899730081 +82 10000 99.94001799460162 100.0 +83 10000 99.89002199560088 100.03000900270081 +84 10000 99.85010492655141 99.97000899730081 +85 10000 99.99 100.0100010001 +86 10000 99.95001499550135 99.98000399920016 +87 10000 99.9000499750125 99.97000899730081 +88 10000 99.8700389883035 100.05002501250625 +89 10000 99.91005396761943 99.95002498750625 +9 10000 99.91005396761943 99.96001599360255 +90 10000 99.89006596042374 99.98000399920016 +91 10000 99.89001099890011 100.07004903432403 +92 10000 99.93004197481511 99.95002498750625 +93 10000 99.92005596082743 99.930048965724 +94 10000 99.94001199760048 100.0100010001 +95 10000 99.93002099370189 100.0 +96 10000 99.88004798080767 100.02000400080016 +97 10000 99.89003299010297 100.0100010001 +98 10000 99.95001499550135 99.97000899730081 +99 10000 99.92002399280216 100.0 diff --git a/results/albacore_v2.1.10_nanopolish_meth_medaka.tsv b/results/albacore_v2.1.10_nanopolish_meth_medaka.tsv new file mode 100644 index 0000000..723d9ae --- /dev/null +++ b/results/albacore_v2.1.10_nanopolish_meth_medaka.tsv @@ -0,0 +1,552 @@ +Name Length Identity Relative length +1 10000 99.67052715654953 99.9000999000999 +10 10000 99.72041937094359 99.95002498750625 +100 10000 99.72025177340393 100.0 +101 10000 99.71046325878594 99.89012086704625 +102 10000 99.68051118210863 99.94003597841295 +103 10000 99.69046430354469 99.96001599360255 +104 10000 99.70032963739887 100.02000400080016 +105 10000 99.6404673923899 100.0 +106 10000 99.72033559728327 99.95002498750625 +107 10000 99.77036741214057 99.87016878058525 +108 10000 99.74025974025975 99.9900009999 +109 10000 99.74038941587618 99.930048965724 +11 10000 99.84014387051654 99.94003597841295 +110 10000 99.64032370866221 100.04001600640257 +111 10000 99.67049425861208 99.930048965724 +112 10000 99.70032963739887 99.98000399920016 +113 10000 99.3729471484025 99.61151509114454 +114 10000 99.66054313099042 99.91008092716555 +115 10000 99.74033756117048 99.94003597841295 +116 10000 99.72036352741436 99.95002498750625 +117 10000 99.68063872255489 99.85022466300549 +118 10000 99.74038941587618 99.94003597841295 +119 10000 99.67036260113875 100.02000400080016 +12 10000 99.64050329538645 99.95002498750625 +120 10000 99.64053919121318 99.95002498750625 +121 10000 99.7103765105363 99.94003597841295 +122 10000 99.83011891675827 100.0 +123 10000 99.71028971028971 99.9900009999 +124 10000 99.72030766157226 99.98000399920016 +125 10000 99.67065868263474 99.85022466300549 +126 10000 99.6506986027944 99.85022466300549 +127 10000 99.72036352741436 99.94003597841295 +128 10000 99.74031162604874 99.97000899730081 +129 10000 99.78021978021978 99.97000899730081 +13 10000 99.62064490366377 99.95002498750625 +130 10000 99.79018883005295 100.0 +131 10000 99.67056004791854 99.89012086704625 +132 10000 99.68057496506289 99.87016878058525 +133 10000 99.75032457804853 99.930048965724 +134 10000 99.65052421367947 99.95002498750625 +135 10000 99.60063897763578 99.96001599360255 +136 10000 99.74025974025975 99.96001599360255 +137 10000 99.69030969030969 100.03000900270081 +138 10000 99.75019984012789 100.0100010001 +139 10000 99.61077844311377 99.9000999000999 +14 10000 99.66061090037931 99.89012086704625 +140 10000 99.77011494252874 99.9900009999 +141 10000 99.77013791724966 99.9900009999 +142 10000 99.73026973026973 100.02000400080016 +143 10000 99.69027874912578 99.98000399920016 +144 10000 99.6007187063286 99.92006394884093 +145 10000 99.60047942469038 100.03000900270081 +146 10000 99.65062886803753 99.85022466300549 +147 10000 99.57038665201318 100.1401962747847 +148 10000 99.66067864271457 99.86019572598363 +149 10000 99.81018981018981 99.95002498750625 +15 10000 99.76026370991909 99.96001599360255 +150 10000 99.72027972027972 100.03000900270081 +151 10000 99.69040247678019 99.98000399920016 +152 10000 99.68044737367686 99.95002498750625 +153 10000 99.75037443834249 99.91008092716555 +154 10000 99.65062886803753 99.92006394884093 +155 10000 99.73045822102426 99.89012086704625 +156 10000 99.5507637017071 99.930048965724 +157 10000 99.72041937094359 99.9000999000999 +158 10000 99.74015590645612 100.0100010001 +159 10000 99.66057701906759 99.94003597841295 +16 10000 99.77029861180465 99.91008092716555 +160 10000 99.65052421367947 99.91008092716555 +161 10000 99.7005091344714 99.9000999000999 +162 10000 99.70044932601098 99.9000999000999 +163 10000 99.77022977022978 99.98000399920016 +164 10000 99.81009495252374 100.03000900270081 +165 10000 99.7602158057748 100.02000400080016 +166 10000 99.64035964035963 100.0 +167 10000 99.6003996003996 100.05002501250625 +168 10000 99.67046135410425 99.98000399920016 +169 10000 99.70035956851778 99.94003597841295 +17 10000 99.70053902974645 99.88014382740711 +170 10000 99.77027566919696 99.95002498750625 +171 10000 99.71028971028971 100.02000400080016 +172 10000 99.69034062531216 99.96001599360255 +173 10000 99.56083441461223 99.930048965724 +174 10000 99.71034758290052 99.93003498250874 +175 10000 99.7103765105363 99.94003597841295 +176 10000 99.7702527220058 99.930048965724 +177 10000 99.81020877035262 99.930048965724 +178 10000 99.74033756117048 99.92006394884093 +179 10000 99.69027874912578 99.9900009999 +18 10000 99.70035956851778 99.97000899730081 +180 10000 99.69055699740467 99.87016878058525 +181 10000 99.62109881344102 99.76057462090982 +182 10000 99.75027469783238 99.98000399920016 +183 10000 99.81018981018981 99.96001599360255 +184 10000 99.76016788248226 100.06003602161297 +185 10000 99.72030766157226 99.9900009999 +186 10000 99.80017983814567 99.95002498750625 +187 10000 99.77997799779978 100.01001001001 +188 10000 99.8001998001998 99.95002498750625 +189 10000 99.73048512677181 99.87016878058525 +19 10000 99.7005091344714 99.91008092716555 +190 10000 99.70047923322684 99.91008092716555 +191 10000 99.81017084623839 99.9900009999 +192 10000 99.68070245459988 99.83028850953379 +193 10000 99.72036352741436 99.98000399920016 +194 10000 99.63084904719146 99.86019572598363 +195 10000 99.78015389227541 99.9900009999 +196 10000 99.62049335863378 100.05002501250625 +197 10000 99.73016190285828 100.06003602161297 +198 10000 99.66033966033966 100.02000400080016 +199 10000 99.78017585931255 100.0 +2 10000 99.61042852861851 100.07004903432403 +20 10000 99.74028568574568 99.9900009999 +200 10000 99.59045050444512 100.080064051241 +201 10000 99.79025169796245 99.92006394884093 +202 10000 99.64050329538645 99.9900009999 +203 10000 99.61066187481282 99.95002498750625 +204 10000 99.83013589128697 99.97000899730081 +205 10000 99.61073959476994 99.91008092716555 +206 10000 99.82010793523885 100.04001600640257 +207 10000 99.01795456799921 99.25558312655087 +208 10000 99.71023181454837 100.02000400080016 +209 10000 99.74028568574568 99.9900009999 +21 10000 99.61058412381428 99.95002498750625 +210 10000 99.76035946080879 99.91008092716555 +211 10000 99.82017982017982 99.95002498750625 +212 10000 99.2045341553147 99.53219866626854 +213 10000 99.76026370991909 99.95002498750625 +214 10000 99.73029667365897 99.95002498750625 +215 10000 99.69043339324945 99.97000899730081 +216 10000 99.69030969030969 100.04001600640257 +217 10000 99.66061090037931 99.95002498750625 +218 10000 99.6305910543131 99.930048965724 +219 10000 99.74036349111245 99.9000999000999 +22 10000 99.7103765105363 99.97000899730081 +220 10000 99.60079840319361 99.91008092716555 +221 10000 99.67036260113875 100.04001600640257 +222 10000 99.56043956043956 100.18032458425165 +223 10000 99.64035964035963 99.98000399920016 +224 10000 99.65055910543131 99.94003597841295 +225 10000 99.65062886803753 99.95002498750625 +226 10000 99.77009196321471 100.06003602161297 +227 10000 99.59065495207668 99.96001599360255 +228 10000 99.67042844302406 100.0 +229 10000 99.60055921709606 100.0100010001 +23 10000 99.69046430354469 99.930048965724 +230 10000 99.74020783373301 100.0100010001 +231 10000 99.67056004791854 99.91008092716555 +232 10000 99.69037155413504 99.94003597841295 +233 10000 99.75037443834249 99.89012086704625 +234 10000 99.70014992503748 100.06003602161297 +235 10000 99.65031471675492 99.98000399920016 +236 10000 99.71028971028971 100.02000400080016 +237 10000 99.66040751098681 100.0 +238 10000 99.7103765105363 99.95002498750625 +239 10000 99.83015286242382 99.94003597841295 +24 10000 99.67042844302406 100.0100010001 +240 10000 99.67026378896882 100.03000900270081 +241 10000 99.68035161322545 100.03000900270081 +242 10000 99.71043434847728 99.94003597841295 +243 10000 99.56074673055805 99.91008092716555 +244 10000 99.71028971028971 99.97000899730081 +245 10000 99.65041949660407 99.97000899730081 +246 10000 99.57055827424348 99.9900009999 +247 10000 99.81024667931689 99.91008092716555 +248 10000 99.72037540819666 99.95002498750625 +249 10000 99.60063897763578 99.98000399920016 +25 10000 99.6405750798722 99.94003597841295 +250 10000 99.65062886803753 99.88014382740711 +251 10000 99.71040543239465 99.94003597841295 +252 10000 99.74023378958937 99.95002498750625 +253 10000 99.74020783373301 100.02000400080016 +254 10000 99.70038949365825 99.95002498750625 +255 10000 99.69037155413504 100.0 +256 10000 99.74023378958937 100.0 +257 10000 99.71014492753623 100.11012113324657 +258 10000 99.70047923322684 99.9000999000999 +259 10000 99.62037962037962 100.07004903432403 +26 10000 99.65027977617906 100.080064051241 +260 10000 99.5711578737409 99.81036031540074 +261 10000 99.77029861180465 99.930048965724 +262 10000 99.54087234254915 99.930048965724 +263 10000 99.70041941282204 99.930048965724 +264 10000 99.64075441572697 99.87016878058525 +265 10000 99.71034758290052 100.0100010001 +266 10000 99.78021978021978 99.9900009999 +267 10000 99.7601439136518 100.03000900270081 +268 10000 99.69040247678019 99.95002498750625 +269 10000 99.80013990206855 100.0100010001 +27 10000 99.76028765481422 99.94003597841295 +270 10000 99.65052421367947 99.94003597841295 +271 10000 99.75029964043148 99.96001599360255 +272 10000 99.40149625935162 99.95002498750625 +273 10000 99.61077844311377 99.87016878058525 +274 10000 99.75024975024975 99.97000899730081 +275 10000 99.73029667365897 99.930048965724 +276 10000 99.75029964043148 99.8801079028874 +277 10000 99.72030766157226 99.9900009999 +278 10000 99.74031162604874 99.98000399920016 +279 10000 99.7102028579994 100.07004903432403 +28 10000 99.60063897763578 100.0100010001 +280 10000 99.80021975826591 99.94003597841295 +281 10000 99.74041533546325 99.87016878058525 +282 10000 99.5610096777412 99.88014382740711 +283 10000 99.6506986027944 99.88014382740711 +284 10000 99.80015987210231 99.97000899730081 +285 10000 99.80025966243883 99.930048965724 +286 10000 99.66057701906759 99.92006394884093 +287 10000 99.72027972027972 99.95002498750625 +288 10000 99.71026076531122 100.02000400080016 +289 10000 99.69037155413504 99.9900009999 +29 10000 99.49106875561321 99.97000899730081 +290 10000 99.6404673923899 99.9900009999 +291 10000 99.59073667398683 99.95002498750625 +292 10000 99.69046430354469 99.9000999000999 +293 10000 99.72041937094359 99.92006394884093 +294 10000 99.43068318018378 100.080064051241 +295 10000 99.76028765481422 99.95002498750625 +296 10000 99.73040439340988 99.91008092716555 +297 10000 99.57068690095846 99.930048965724 +298 10000 99.79025169796245 99.92006394884093 +299 10000 99.80021975826591 99.96001599360255 +3 10000 99.75027469783238 99.94003597841295 +30 10000 99.6404673923899 99.97000899730081 +300 10000 99.71031864948557 99.97000899730081 +301 10000 99.83015286242382 99.98000399920016 +302 10000 99.80021975826591 99.95002498750625 +303 10000 99.81009495252374 100.02000400080016 +304 10000 99.67032967032966 99.98000399920016 +305 10000 99.63066480335397 99.9000999000999 +306 10000 99.66040751098681 99.97000899730081 +307 10000 99.68047928107838 99.95002498750625 +308 10000 99.77020681386752 100.0100010001 +309 10000 99.70035956851778 100.0 +31 10000 99.67046135410425 99.9900009999 +310 10000 99.79016786570743 99.98000399920016 +311 10000 99.73040439340988 99.92006394884093 +312 10000 99.81013290696512 99.96001599360255 +313 10000 99.74028568574568 99.95002498750625 +314 10000 99.81017084623839 99.94003597841295 +315 10000 99.8001998001998 99.95002498750625 +316 10000 99.75027469783238 99.95002498750625 +317 10000 99.77020681386752 99.98000399920016 +318 10000 99.74025974025975 99.9900009999 +319 10000 99.66057701906759 99.94003597841295 +32 10000 99.65048931495906 99.97000899730081 +320 10000 99.6805430767695 99.91008092716555 +321 10000 99.62064490366377 99.97000899730081 +322 10000 99.77027566919696 99.930048965724 +323 10000 99.70035956851778 99.95002498750625 +324 10000 99.6405750798722 99.91008092716555 +325 10000 99.69046430354469 99.92006394884093 +326 10000 99.77029861180465 99.930048965724 +327 10000 99.65052421367947 99.91008092716555 +328 10000 99.73040439340988 99.89012086704625 +329 10000 99.8001998001998 99.97000899730081 +33 10000 99.69068050289363 99.84025559105432 +330 10000 99.74033756117048 99.95002498750625 +331 10000 99.68051118210863 99.91008092716555 +332 10000 99.54100977848732 99.86019572598363 +333 10000 99.64068270286455 99.85022466300549 +334 10000 99.76031159492659 99.92006394884093 +335 10000 99.77022977022978 99.97000899730081 +336 10000 99.68051118210863 99.930048965724 +337 10000 99.70038949365825 99.97000899730081 +338 10000 99.66047533453165 99.95002498750625 +339 10000 99.75027469783238 99.9900009999 +34 10000 99.69024780175859 100.080064051241 +340 10000 99.77022977022978 99.98000399920016 +341 10000 99.65062886803753 99.89012086704625 +342 10000 99.60063897763578 99.96001599360255 +343 10000 99.80031948881789 99.87016878058525 +344 10000 99.64050329538645 99.98000399920016 +345 10000 99.69034062531216 100.02000400080016 +346 10000 99.68057496506289 99.92006394884093 +347 10000 99.61058412381428 99.96001599360255 +348 10000 99.75012493753124 100.06003602161297 +349 10000 99.62072063080147 99.9000999000999 +35 10000 99.75029964043148 99.96001599360255 +350 10000 99.78019782196023 99.98000399920016 +351 10000 99.78019782196023 99.96001599360255 +352 10000 99.73048512677181 99.87016878058525 +353 10000 99.73035054429242 99.96001599360255 +354 10000 99.79016786570743 99.98000399920016 +355 10000 99.80023971234519 99.94003597841295 +356 10000 99.67056004791854 99.91008092716555 +357 10000 99.74025974025975 99.9900009999 +358 10000 99.73035054429242 99.95002498750625 +359 10000 99.68028774103307 100.0 +36 10000 99.75019984012789 100.0 +360 10000 99.69040247678019 99.91008092716555 +361 10000 99.69034062531216 100.0 +362 10000 99.75024975024975 99.97000899730081 +363 10000 99.62068277101218 99.91008092716555 +364 10000 99.7002997002997 99.97000899730081 +365 10000 99.620607028754 99.95002498750625 +366 10000 99.80015987210231 99.97000899730081 +367 10000 99.7702527220058 99.95002498750625 +368 10000 99.51092923445454 99.96001599360255 +369 10000 99.61070073867039 99.89012086704625 +37 10000 99.6309963099631 99.81036031540074 +370 10000 99.66044142614601 99.9900009999 +371 10000 99.58079648667531 99.96001599360255 +372 10000 99.71026076531122 100.0100010001 +373 10000 99.65055910543131 99.97000899730081 +374 10000 99.74049306317995 99.85022466300549 +375 10000 99.56079057696147 99.91008092716555 +376 10000 99.79020979020979 100.0 +377 10000 99.65073345973455 99.84025559105432 +378 10000 99.72044728434504 99.89012086704625 +379 10000 99.61073959476994 99.89012086704625 +38 10000 99.61070073867039 99.89012086704625 +380 10000 99.65048931495906 99.96001599360255 +381 10000 99.79020979020979 99.95002498750625 +382 10000 99.67039552536956 100.0100010001 +383 10000 99.7601439136518 100.0100010001 +384 10000 99.72022382094325 100.0100010001 +385 10000 99.68060684699071 99.88014382740711 +386 10000 99.79018883005295 99.98000399920016 +387 10000 99.73048512677181 99.88014382740711 +388 10000 99.79018883005295 99.97000899730081 +389 10000 99.61062300319489 99.97000899730081 +39 10000 99.52176945302381 99.69095803010667 +390 10000 99.7102028579994 99.98000399920016 +391 10000 99.72030766157226 99.98000399920016 +392 10000 99.80015987210231 99.98000399920016 +393 10000 99.6405750798722 99.94003597841295 +394 10000 99.67049425861208 99.8801079028874 +395 10000 99.65055910543131 99.930048965724 +396 10000 99.71023181454837 100.03000900270081 +397 10000 99.77016088737884 100.03000900270081 +398 10000 99.66047533453165 99.94003597841295 +399 10000 99.68041545990212 99.96001599360255 +4 10000 99.53075079872204 100.05002501250625 +40 10000 99.71028971028971 100.07004903432403 +400 10000 99.69046430354469 99.91008092716555 +401 10000 99.79012592444533 100.03000900270081 +402 10000 99.77022977022978 99.95002498750625 +403 10000 99.71034758290052 99.95002498750625 +404 10000 99.60055921709606 100.0 +405 10000 99.6405750798722 99.98000399920016 +406 10000 99.73037747153984 99.94003597841295 +407 10000 99.64050329538645 99.97000899730081 +408 10000 99.64043148222133 99.98000199980002 +409 10000 99.71043434847728 99.91008092716555 +41 10000 99.68051118210863 99.91008092716555 +410 10000 99.8001998001998 99.94003597841295 +411 10000 99.69061876247505 99.82032341784787 +412 10000 99.77032154983024 99.91008092716555 +413 10000 99.76028765481422 99.94003597841295 +414 10000 99.67056004791854 99.88014382740711 +415 10000 99.6803835397523 100.0 +416 10000 99.72039145196725 99.88014382740711 +417 10000 99.6803835397523 100.0 +418 10000 99.65048931495906 99.98000399920016 +419 10000 99.69030969030969 99.9900009999 +42 10000 99.72022382094325 100.0100010001 +420 10000 99.88001199880011 100.09008107296567 +421 10000 99.65034965034965 100.07004903432403 +422 10000 99.75027469783238 99.97000899730081 +423 10000 99.72039145196725 99.92006394884093 +424 10000 99.61062300319489 99.930048965724 +425 10000 99.75039936102236 99.9000999000999 +426 10000 99.76031159492659 99.92006394884093 +427 10000 99.80023971234519 99.9000999000999 +428 10000 99.7206146477749 99.83028850953379 +429 10000 99.78037336527902 99.83028850953379 +43 10000 99.80015987210231 100.0 +430 10000 99.78017585931255 99.9900009999 +431 10000 99.82010793523885 100.03000900270081 +432 10000 99.61050634175572 100.05002501250625 +433 10000 99.74033756117048 99.94003597841295 +434 10000 99.72041937094359 99.930048965724 +435 10000 99.63048037551184 99.95002498750625 +436 10000 99.66054313099042 99.91008092716555 +437 10000 99.49117030829093 99.88014382740711 +438 10000 99.5609220636663 99.92006394884093 +439 10000 99.70041941282204 99.94003597841295 +44 10000 99.75022479768208 99.95002498750625 +440 10000 99.63040655279192 100.080064051241 +441 10000 99.66050923614578 99.95002498750625 +442 10000 99.72022382094325 100.0 +443 10000 99.6702308384131 100.07004903432403 +444 10000 99.74036349111245 99.92006394884093 +445 10000 99.61066187481282 99.930048965724 +446 10000 99.7103765105363 99.95002498750625 +447 10000 99.68060684699071 99.86019572598363 +448 10000 99.66047533453165 99.96001599360255 +449 10000 99.79033546325878 99.87016878058525 +45 10000 99.66030572484763 100.03000900270081 +450 10000 99.65038457696534 100.0 +451 10000 99.66061090037931 99.930048965724 +452 10000 99.64068270286455 99.86019572598363 +453 10000 99.50099800399201 99.95002498750625 +454 10000 99.68047928107838 99.97000899730081 +455 10000 99.68057496506289 99.89012086704625 +456 10000 99.74028568574568 99.9900009999 +457 10000 99.58088015168147 99.9000999000999 +458 10000 99.73037747153984 99.88014382740711 +459 10000 99.70044932601098 99.91008092716555 +46 10000 99.73029667365897 99.96001599360255 +460 10000 99.63070166683302 99.89009891098011 +461 10000 99.4913732921113 99.82032341784787 +462 10000 99.63048037551184 99.9900009999 +463 10000 99.64061096136568 99.9000999000999 +464 10000 99.7005091344714 99.89012086704625 +465 10000 99.63066480335397 99.87016878058525 +466 10000 99.71046325878594 99.91008092716555 +467 10000 99.6405750798722 99.92006394884093 +468 10000 99.66064477492763 99.86019572598363 +469 10000 99.52114924181963 99.87016878058525 +47 10000 99.6506637388961 99.89012086704625 +470 10000 99.68047928107838 99.95002498750625 +471 10000 99.70041941282204 99.930048965724 +472 10000 99.7602158057748 99.9900009999 +473 10000 99.74028568574568 99.96001599360255 +474 10000 99.52095808383234 99.91008092716555 +475 10000 99.71028971028971 99.97000899730081 +476 10000 99.7103765105363 99.95002498750625 +477 10000 99.66037358905204 100.0 +478 10000 99.7101738956626 100.06003602161297 +479 10000 99.70044932601098 99.9000999000999 +48 10000 99.75029964043148 99.930048965724 +480 10000 99.69046430354469 99.94003597841295 +481 10000 99.49111953701856 99.92006394884093 +482 10000 99.70041941282204 99.94003597841295 +483 10000 99.74031162604874 99.95002498750625 +484 10000 99.7103765105363 99.930048965724 +485 10000 99.68047928107838 99.94003597841295 +486 10000 99.70047923322684 99.89012086704625 +487 10000 99.65038457696534 100.0 +488 10000 99.77016088737884 100.0 +489 10000 99.75017487758569 100.05002501250625 +49 10000 99.64039556487863 100.02000400080016 +490 10000 99.69043339324945 99.95002498750625 +491 10000 99.57090110767389 99.87016878058525 +492 10000 99.61062300319489 99.930048965724 +493 10000 99.67036260113875 100.0100010001 +494 10000 99.620607028754 99.96001599360255 +495 10000 99.69055699740467 99.89012086704625 +496 10000 99.58092197166235 99.91008092716555 +497 10000 99.73040439340988 99.91008092716555 +498 10000 99.82008995502248 100.0100010001 +499 10000 99.68047928107838 99.95002498750625 +5 10000 99.67046135410425 99.94003597841295 +50 10000 99.74041533546325 99.91008092716555 +500 10000 99.69049520766774 99.92006394884093 +501 10000 99.73035054429242 99.92006394884093 +502 10000 99.65038457696534 100.0 +503 10000 99.53107851940537 99.88014382740711 +504 10000 99.81013290696512 99.98000399920016 +505 10000 99.60043951653182 100.03000900270081 +506 10000 99.67046135410425 99.95002498750625 +507 10000 99.61050634175572 100.02000400080016 +508 10000 99.63066480335397 99.89012086704625 +509 10000 99.84012789768185 99.96001599360255 +51 10000 99.57107231920199 99.83028850953379 +510 10000 99.6007187063286 99.9000999000999 +511 10000 99.73040439340988 99.930048965724 +512 10000 99.67036260113875 99.930048965724 +513 10000 99.66023783351653 100.07004903432403 +514 10000 99.63051727581386 99.98000399920016 +515 10000 99.70020985310283 100.05002501250625 +516 10000 99.75032457804853 99.92006394884093 +517 10000 99.77020681386752 99.9900009999 +518 10000 99.63040655279192 100.03000900270081 +519 10000 99.58037766010591 100.07004903432403 +52 10000 99.75022479768208 99.9900009999 +520 10000 99.72041937094359 99.91008092716555 +521 10000 99.68041545990212 99.96001599360255 +522 10000 99.67056004791854 99.89012086704625 +523 10000 99.6803835397523 99.98000399920016 +524 10000 99.72039145196725 99.95002498750625 +525 10000 99.57094392336859 99.89012086704625 +526 10000 99.59069581711091 100.0100010001 +527 10000 99.69043339324945 99.95002498750625 +528 10000 99.72027972027972 99.97000899730081 +529 10000 99.53065708008788 100.06003602161297 +53 10000 99.71054995508534 99.88014382740711 +530 10000 99.6003996003996 100.05002501250625 +531 10000 99.57051538154215 100.03000900270081 +532 10000 99.75027469783238 99.95002498750625 +533 10000 99.70047923322684 99.92006394884093 +534 10000 99.71040543239465 99.95002498750625 +535 10000 99.71028971028971 99.98000399920016 +536 10000 99.70038949365825 99.97000899730081 +537 10000 99.66040751098681 100.0100010001 +538 10000 99.74041533546325 99.89012086704625 +539 10000 99.73045841074733 99.86019572598363 +54 10000 99.72030766157226 99.95002498750625 +540 10000 99.72030766157226 99.91008092716555 +541 10000 99.71031864948557 99.95002498750625 +542 10000 99.64064683569575 99.92006394884093 +543 10000 99.76028765481422 99.96001599360255 +544 10000 99.68051118210863 99.92006394884093 +545 10000 99.71054995508534 99.87016878058525 +546 10000 99.54050544401159 100.09008107296567 +547 10000 99.82017982017982 99.95002498750625 +548 10000 99.84016292070494 99.92006394884093 +549 10000 99.74028568574568 100.0 +55 10000 99.73029667365897 99.94003597841295 +550 10000 99.80025966243883 99.88014382740711 +551 10000 99.71028971028971 100.02000400080016 +56 10000 99.7002997002997 99.97000899730081 +57 10000 99.7103765105363 99.97000899730081 +58 10000 99.78032950574139 99.87016878058525 +59 10000 99.75029964043148 99.91005396761943 +6 10000 99.76023976023976 99.97000899730081 +60 10000 99.75042427872617 99.87016878058525 +61 10000 99.620607028754 99.97000899730081 +62 10000 99.60067884596187 100.0100010001 +63 10000 99.69040247678019 99.9900009999 +64 10000 99.58058717795087 99.98000399920016 +65 10000 99.73048512677181 99.87016878058525 +66 10000 99.6506986027944 99.87016878058525 +67 10000 99.7602158057748 99.96001599360255 +68 10000 99.570729759409 99.930048965724 +69 10000 99.76026370991909 99.97000899730081 +7 10000 99.51102684362839 99.94003597841295 +70 10000 99.69040247678019 99.96001599360255 +71 10000 99.65052421367947 99.87011689479469 +72 10000 99.81020877035262 99.94003597841295 +73 10000 99.65059399021663 99.930048965724 +74 10000 99.68047928107838 99.96001599360255 +75 10000 99.66040751098681 99.97000899730081 +76 10000 99.73045822102426 99.88014382740711 +77 10000 99.80017983814567 100.0100010001 +78 10000 99.63048037551184 100.0100010001 +79 10000 99.64064683569575 99.89012086704625 +8 10000 99.72044728434504 99.88014382740711 +80 10000 99.70035956851778 99.98000399920016 +81 10000 99.72053099111687 99.85022466300549 +82 10000 99.7802417340925 99.96001599360255 +83 10000 99.6305910543131 99.98000399920016 +84 10000 99.65059399021663 99.92006394884093 +85 10000 99.8000799680128 100.04001600640257 +86 10000 99.81020877035262 99.91008092716555 +87 10000 99.69046430354469 99.95002498750625 +88 10000 99.70035956851778 99.98000399920016 +89 10000 99.73021582733813 100.0100010001 +9 10000 99.64064683569575 99.91008092716555 +90 10000 99.64050329538645 99.92006394884093 +91 10000 99.56083441461223 99.92006394884093 +92 10000 99.82017982017982 99.96001599360255 +93 10000 99.72055888223552 99.86019572598363 +94 10000 99.67046135410425 99.9900009999 +95 10000 99.76019184652279 100.0 +96 10000 99.6203037569944 100.080064051241 +97 10000 99.66030572484763 100.05002501250625 +98 10000 99.71031864948557 99.95002498750625 +99 10000 99.62064490366377 99.95002498750625