-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdifference_equation.py
101 lines (75 loc) · 2.19 KB
/
difference_equation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
# In[3]:
'Defining discritization schemes'
class discretization_schemes():
#------------------------------------------------#
def central_difference_x(f, DX):
diff = np.zeros_like(f, dtype = np.longdouble)
diff[1:-1, 1:-1] = (
f[1:-1, 2: ]
-
f[1:-1, 0:-2]
) / (
2 * DX
)
return diff
#------------------------------------------------#
#------------------------------------------------#
def central_difference_y(f, DY):
diff = np.zeros_like(f, dtype = np.longdouble)
diff[1:-1, 1:-1] = (
f[2: , 1:-1]
-
f[0:-2, 1:-1]
) / (
2 * DY
)
return diff
#------------------------------------------------#
#------------------------------------------------#
def upwind_x(f, DX):
diff = np.zeros_like(f, dtype = np.longdouble)
diff[1:-1, 1:-1] = (
f[1:-1, 1: -1 ]
-
f[1:-1, : -2]
) / (
DX
)
return diff
#------------------------------------------------#
def upwind_y(f, DY):
diff = np.zeros_like(f, dtype = np.longdouble)
diff[1:-1, 1:-1] = (
f[1:-1, 1: -1 ]
-
f[: -2, 1:-1]
) / (
DY
)
return diff
#------------------------------------------------#
#------------------------------------------------#
def laplace(f, DX):
diff = np.zeros_like(f, dtype = np.longdouble)
diff[1:-1, 1:-1] = (
f[1:-1, 0:-2]
+
f[0:-2, 1:-1]
-
4
*
f[1:-1, 1:-1]
+
f[1:-1, 2: ]
+
f[2: , 1:-1]
) / (
DX**2
)
return diff
#------------------------------------------------#
# In[ ]: