We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
在 "理解 PLONK(四):算术约束与拷贝约束" 这一小节中, 文章提到采用互相不等的二次非剩余 $k_i$ 生成陪集 $k_i \mathbf{H}$, 其中 $H$ 为乘法循环群, 这种方式存在问题. 考虑以下情形:
有限域 $F_{17}$ 上的乘法群 $F_{17}^* = \{g^0, \cdots, g^{15}\}$, 其中生成元 $g = 3$, 令 $h = g^4$, 则 $H = \{g^0, g^4, g^8, g^{12}\} = \{h^0, h^1, h^2, h^3\}$ 为乘法循环群.
如果令 $k_1 = g, k_2 = g^5$, 显然 $k_1, k_2$ 都是奇数, 即它们都是二次非剩余, 则有 $k_1 H = \{g^1, g^5, g^9, g^{13}\}$, $k_2 H = \{g^5, g^9, g^{13}, g^1\}$, 有 $k_1 H = k_2 H$.
对于 $k$ 的选取, 一个有效取值范围为 $\{g^0, g^1, g^2, g^3\}$, 即 $\{g^i\}$, $i \in [0, | F_{17}^* | / DL(g, h))$, 其中 $DL(g, h)$是元素 $h$ 关于 $g$ 的离散对数, 在此 $DL(g, h) = 4$, 且 $| F_{17}^* |$ 为乘法群的阶, 其值为16.
The text was updated successfully, but these errors were encountered:
谢谢你的指正,我来修正下
Sorry, something went wrong.
No branches or pull requests
在 "理解 PLONK(四):算术约束与拷贝约束" 这一小节中, 文章提到采用互相不等的二次非剩余$k_i$ 生成陪集 $k_i \mathbf{H}$ , 其中 $H$ 为乘法循环群, 这种方式存在问题. 考虑以下情形:
有限域$F_{17}$ 上的乘法群 $F_{17}^* = \{g^0, \cdots, g^{15}\}$ , 其中生成元 $g = 3$ , 令 $h = g^4$ , 则 $H = \{g^0, g^4, g^8, g^{12}\} = \{h^0, h^1, h^2, h^3\}$ 为乘法循环群.
如果令$k_1 = g, k_2 = g^5$ , 显然 $k_1, k_2$ 都是奇数, 即它们都是二次非剩余, 则有 $k_1 H = \{g^1, g^5, g^9, g^{13}\}$ , $k_2 H = \{g^5, g^9, g^{13}, g^1\}$ , 有 $k_1 H = k_2 H$ .
对于$k$ 的选取, 一个有效取值范围为 $\{g^0, g^1, g^2, g^3\}$ , 即 $\{g^i\}$ , $i \in [0, | F_{17}^* | / DL(g, h))$ , 其中 $DL(g, h)$ 是元素 $h$ 关于 $g$ 的离散对数, 在此 $DL(g, h) = 4$ , 且 $| F_{17}^* |$ 为乘法群的阶, 其值为16.
The text was updated successfully, but these errors were encountered: