-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
125 lines (117 loc) · 3.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import matplotlib.pyplot as plt
def create_mask(I,J,K,rate):
M = np.random.binomial(1,rate,I*J*K)
M = M.reshape(K,I,J)
return M
def read_data_from_txt(dir,I,J,K):
lines = [line.rstrip('\n') for line in open(dir)]
fact_list = []
for line in lines:
fact_list.append([int(x) for x in line.split('\t')])
X = np.zeros((K,I,J))
for fact in fact_list:
k = fact[0]
i = fact[1]
j = fact[2]
X[k,i,j] = 1
return X
def read_data_from_txt_for_pf(dir,I,J,K):
lines = [line.rstrip('\n') for line in open(dir)]
fact_list = []
for line in lines:
fact_list.append([int(x) for x in line.split('\t')])
X = 5*np.ones((K,I,J))
for fact in fact_list:
k = fact[0]
i = fact[1]
j = fact[2]
X[k,i,j] = 1
return X
def tpr_fpr(X,M,D,I,J,K):
tn = 0
fn = 0
tp = 0
fp = 0
for k in range(K):
for i in range(I):
for j in range(J):
if M[k,i,j] == 0:
if X[k,i,j] == 1:
if D[k,i,j] == 1:
tp = tp + 1
else:
fn = fn + 1
else:
if D[k,i,j] == 1:
fp = fp + 1
else:
tn = tn + 1
tpr = (tp*1.0)/(tp+fn)
fpr = (fp*1.0)/(tn+fp)
return tpr, fpr
def tpr_fpr_train(X,M,D,I,J,K):
tn = 0
fn = 0
tp = 0
fp = 0
for k in range(K):
for i in range(I):
for j in range(J):
if M[k,i,j] == 1:
if X[k,i,j] == 1:
if D[k,i,j] == 1:
tp = tp + 1
else:
fn = fn + 1
else:
if D[k,i,j] == 1:
fp = fp + 1
else:
tn = tn + 1
tpr = (tp*1.0)/(tp+fn)
fpr = (fp*1.0)/(tn+fp)
return tpr, fpr
def thresh_matrix(X_estimated,thresh,I,J,K):
th_mat = np.zeros((K,I,J))
for i in range(I):
for j in range(J):
for k in range(K):
if X_estimated[k,i,j] > thresh:
th_mat[k,i,j] = 1
return th_mat
def AUC(X,M,X_estimated,I,J,K):
tpr_list = []
fpr_list = []
tpr_list_train = []
fpr_list_train = []
for thresh in np.linspace(0,1,51):
D = thresh_matrix(X_estimated,thresh,I,J,K)
tpr, fpr = tpr_fpr(X,M,D,I,J,K)
tpr_list.append(tpr)
fpr_list.append(fpr)
tpr_train, fpr_train = tpr_fpr_train(X,M,D,I,J,K)
tpr_list_train.append(tpr_train)
fpr_list_train.append(fpr_train)
return np.trapz(tpr_list[::-1], x=fpr_list[::-1]), np.trapz(tpr_list_train[::-1], x=fpr_list_train[::-1])
def plot_AUC_for_test(X,M,X_estimated_list,I,J,K,name_list):
color_list = ['b-', 'y-', 'k-', 'r-', 'g-']
list_length = len(name_list)
for i in range(list_length):
X_estimated = X_estimated_list[i]
name = name_list[i]
color = color_list[i]
tpr_list = []
fpr_list = []
for thresh in np.linspace(0,1,51):
D = thresh_matrix(X_estimated,thresh,I,J,K)
tpr, fpr = tpr_fpr(X,M,D,I,J,K)
tpr_list.append(tpr)
fpr_list.append(fpr)
print name, str(np.trapz(tpr_list[::-1], x=fpr_list[::-1]))
plt.plot(fpr_list, tpr_list, color, label=name)
plt.legend()
plt.xlabel('False-Positive Rate')
plt.ylabel('True-Positive Rate')
plt.title('ROC Curves')
plt.show()