-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgesture_model.py
381 lines (287 loc) · 9.56 KB
/
gesture_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from skimage import data, io, filters
import gzip
from skimage.feature import hog
from skimage.transform import resize
import pickle
import pandas as pd
import time
import glob
from sklearn.naive_bayes import MultinomialNB,GaussianNB
import random
import csv
from os import listdir
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from skimage.color import rgb2gray
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import LinearSVC
from os.path import isfile, join
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
import json
from skimage.transform import rescale
#https://medium.freecodecamp.org/weekend-projects-sign-language-and-static-gesture-recognition-using-scikit-learn-60813d600e79
def dumpclassifier(model,file_name):
with open(file_name, 'wb') as f:
pickle.dump(model, f)
direc='../dataset3/Dataset/'
direc_path='/home/mayank/Sem-6/SML/project/gesture_recognition/dataset3/Dataset/'
image_dim=[320,240]
handDetector=None
signDetector=None
label_encoder = LabelEncoder().fit(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N','O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y'])
def downloadfiles(filenames):
dir_files = {}
for x in filenames:
print(x)
dir_files[x]=io.imread(direc_path+x)
return dir_files
def crop(img,x1,x2,y1,y2):
crp=img[y1:y2,x1:x2]
resize_x=128
resize_y=128
crp=resize(crp,((resize_x,resize_y)))
return crp
def overlapping_area(detection_1, detection_2):
y11 = detection_1[1]
x22 = detection_2[0] + detection_2[3]
x21 = detection_2[0]
x11 = detection_1[0]
y12 = detection_1[1] + detection_1[4]
x12 = detection_1[0] + detection_1[3]
y21 = detection_2[1]
y22 = detection_2[1] + detection_2[4]
temp1=min(x12, x22)
temp2=max(x11, x21)
temp3=temp1-temp2
x_overlap = max(0,temp3)
temp4=min(y12, y22)
temp5=max(y11, y21)
temp6=temp4-temp5
y_overlap = max(0,temp6)
overlap_area = x_overlap * y_overlap
area_1 = detection_1[3] * detection_2[4]
area_2 = detection_2[3] * detection_2[4]
temp8=area_1+area_2
total_area = temp8 - overlap_area
temp7=overlap_area / float(total_area)
return temp7
def handNonhand_imglist(boundbox,imgset):
hand_images =[]
non_hand_images =[]
non_hand_labels=[]
hand_labels=[]
overlap_thresh=0.5
for name_img in boundbox.image:
curr_image = boundbox[boundbox['image']==name_img].values[0]
x1 = curr_image[1]
y1 = curr_image[2]
x2 = curr_image[3]
y2 = curr_image[4]
side_len = curr_image[5]
hand_bool=curr_image[6]
least_hand=0
boundary_1 = [x1,y1,0,side_len,side_len]
cropped_image_rgb=crop(imgset[name_img],x1,x2,y1,y2)
cropped_image_grey=rgb2gray(cropped_image_rgb)
cropped_image_hog=hog(cropped_image_grey)
hand_images.append(cropped_image_hog)
hand_labels.append(1)
while least_hand <= 1:
x1_new = random.randint(0,image_dim[0]-side_len)
y1_new = random.randint(0,image_dim[1]-side_len)
x2_new = x1_new+side_len
y2_new=y1_new+side_len
crp = crop(imgset[name_img],x1_new,x2_new,y1_new,y2_new)
crp_grey=rgb2gray(crp)
crop_hog_vec = hog(crp_grey)
boundary_2 = [x1_new,y1_new, 0, side_len, side_len]
z = overlapping_area(boundary_1,boundary_2)
if least_hand <= 1 and z <= overlap_thresh:
non_hand_images.append(crop_hog_vec)
non_hand_labels.append(0)
least_hand += 1
if least_hand== 1:
break
hand_labels.extend(non_hand_labels)
hand_images.extend(non_hand_images)
return hand_images,hand_labels
def do_hardNegativeMining(cached_window,boundbox, imgset, model, step_x, step_y):
print("HNM doing")
lis = []
labels=[]
false_positives = 0
true_positives=0
for name_img in boundbox.image:
true_positives+=1
tupl = boundbox[boundbox['image']==name_img].values[0]
x1 = tupl[1]
y1 = tupl[2]
x2 = tupl[3]
y2 = tupl[4]
side = tupl[5]
boundary_1 = [x1,y1,0,side,side]
for x in range(0,image_dim[0]-side,step_x):
for y in range(0,image_dim[1]-side,step_y):
boundary_2 = [x,y,0,side,side]
z = overlapping_area(boundary_1,boundary_2)
prediction = model.predict([cached_window[str(name_img)+str(x)+str(y)]])[0]
true_positives+=1
if prediction == 1 and z<=0.5:
lis.append(cached_window[str(name_img)+str(x)+str(y)])
labels.append(0)
true_positives-=1
false_positives += 1
return lis,labels, false_positives
def caching(imgset, boundbox, step_x, step_y):
list_dic_of_hogs = []
dic = {}
i = 0
for img in boundbox.image:
tupl = boundbox[boundbox['image']==img].values[0]
x1 = tupl[1]
y1 = tupl[2]
side = tupl[5]
i += 1
imaage = imgset[img]
for x in range(0,320-side,step_x):
for y in range(0,240-side,step_y):
cropped_image=crop(imaage,x,x+side,y,y+side)
cropped_image_grey=rgb2gray(cropped_image)
cropped_image_hog=hog(cropped_image_grey)
dic[str(img+str(x)+str(y))]=cropped_image_hog
return dic
def improve_Classifier_using_HNM(hog_list, label_list, boundbox, imgset, threshold=20, max_iterations=15):
print ("Hard Negative Mining")
no_of_false_positives = 1000000000
i = 1
step_x = image_dim[0]/10
step_y = image_dim[1]/10
classi = MultinomialNB()
cached_wind = caching(imgset, boundbox, step_x, step_y)
while (i>0):
model = classi.partial_fit(hog_list, label_list, classes = [0,1])
ret = do_hardNegativeMining(cached_wind,boundbox, imgset, model, step_x=step_x, step_y=step_y)
no_of_false_positives = ret[2]
label_list = ret[1]
hog_list = ret[0]
if no_of_false_positives == 0 or no_of_false_positives<=threshold or i>max_iterations:
return model
i += 1
def image_pyramid_step(model, img, scale):
y_border = rescaled_img.shape[0]
detected_box = []
side = 128
rescaled_img = rescale(img, scale)
x_border = rescaled_img.shape[1]
max_confidence_seen = -1
for x in range(0,x_border-side,32):
for y in range(0,y_border-side,24):
cropped_img = crop(rescaled_img,x,x+side,y,y+side)
cropped_img_grey=rgb2gray(cropped_img)
cropped_img_hog=hog(cropped_img_grey)
confidence = model.predict_proba([cropped_img_hog])
if confidence[0][1] > max_confidence_seen:
detected_box = [x, y, confidence[0][1], scale]
max_confidence_seen = confidence[0][1]
return detected_box
def non_max_suppression_fast(boxes, overlapThresh):
print "Perfmoring NMS:"
flag=0
if len(boxes) == 0:
flag=1
if flag==1:
return []
boxes = boxes.astype("float")
pick = []
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
s = boxes[:,4]
temp1=(x2 - x1 + 1)
temp2=(y2 - y1 + 1)
temp3=temp1*temp2
area = temp3
idxs = np.argsort(s)
while len(idxs) > 0:
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
tempa=x1[idxs[:last]]
tempb=y1[idxs[:last]]
tempc=x2[idxs[:last]]
tempd= y2[idxs[:last]]
xx1 = np.maximum(x1[i], tempa)
yy1 = np.maximum(y1[i],tempb )
xx2 = np.minimum(x2[i],tempc )
yy2 = np.minimum(y2[i],tempd)
tempe=xx2 - xx1 + 1
tempf=yy2 - yy1 + 1
width = np.maximum(0, tempe)
height = np.maximum(0, tempf)
overlap = (widtheight * h) / area[idxs[:last]]
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
tempe=boxes[pick].astype("int")
return tempe
class image_segment(object):
def fit(self, user_folder):
print "Fit starts"
boundbox=pd.DataFrame()
my_list=[]
for user in user_folder:
my_list.append(pd.read_csv(direc+user+'/'+user+'_loc.csv',index_col=None,header=0))
boundbox = pd.concat(my_list)
boundbox['side']=boundbox['bottom_right_x']-boundbox['top_left_x']
boundbox['hand']=1
imageset = downloadfiles(boundbox.image.unique())
hog_list,label_list=handNonhand_imglist(boundbox,imageset)
print("Hog Loaded")
train_data = []
train_label = []
for user in user_folder:
user_images = glob.glob(direc_path+user+'/*.jpg')
boundingbox = pd.read_csv(direc_path+user+'/'+user+'_loc.csv')
for rows in boundingbox.iterrows():
cropped_img = crop(imageset[rows[1]['image']], rows[1]['top_left_x'], rows[1]['bottom_right_x'], rows[1]['top_left_y'], rows[1]['bottom_right_y'])
cropped_image_grey=rgb2gray(cropped_img)
cropped_image_hog=hog(cropped_image_grey)
train_data.append(cropped_image_hog.tolist())
train_label.append(rows[1]['image'].split('/')[1][0])
train_label=label_encoder.fit_transform(train_label)
print("Multiclass data loaded")
handDetector = improve_Classifier_using_HNM(hog_list, label_list, boundbox, imageset, threshold=20, max_iterations=15)
print("HNM Performed")
dumpclassifier(handDetector, 'handDetector.pkl')
def hand_segment(self,image, handDetector, filepath):
scale_factors=[1]
detected_box=[]
scaled_sides=[]
ind=0
max_suppression=[]
suppression_thresh=0.4
for f in scale_factors:
detected_box.append(image_pyramid_step(handDetector,image,f))
# print("x:" ,image_pyramid_step(handDetector, image, f)[0])
detected_box[ind][0]/=f
detected_box[ind][1]/=f
scaled_sides.append(128/f)
lis_tup=[detected_box[ind][0], detected_box[ind][1], detected_box[ind][0]+scaled_sides[ind],detected_box[ind][1]+scaled_sides[ind],detected_box[ind][2]]
max_suppression.append(lis_tup)
ind+=1
max_suppression=np.array(max_suppression)
final_images=non_max_suppression_fast(max_suppression, suppression_thresh)
best_segment=final_images[0]
x1_b=best_segment[0]
y1_b=best_segment[1]
x2_b=best_segment[2]
y2_b=best_segment[3]
side_b=x2_b-x1_b
position=[x1_b, y1_b, x2_b, y2_b]
cropped_image_rgb=crop(image,x1_b,x2_b,y1_b,y2_b)
io.imsave(filepath,cropped_image_rgb)
# cropped_image_grey=rgb2gray(cropped_image_rgb)
# cropped_image_hog=hog(cropped_image_grey)
# prediction=signDetector.predict_proba([cropped_image_hog])[0]
# return position,final_prediction