-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMatrixCalculator.java
324 lines (297 loc) · 8.85 KB
/
MatrixCalculator.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/**
* Calculates various operations on matrices and vectors
*
* @author Siddarth Senthilkumar
* @version 2.0
*/
public class MatrixCalculator {
/**
* ---------------------------------------------------------------------------
* FACTORIZATIONS FOR PART 1:
* LU_FACT
* QR_FACT_HOUSH
* QR_FACT_GIVENS
* ---------------------------------------------------------------------------
*/
/**
* Computes the LU factorization of a square matrix
* Algorithm learned from http://rosettacode.org/wiki/LU_decomposition
* @param matrix The nxn matrix to be factored
* @return The matrices and error
*/
public static Matrix[] lu_fact(Matrix a) {
return lu_fact.lu_fact(a);
}
/**
* Computes a QR-factorization for Matrix a using HouseHolder reflections.
* @param a Matrix to factor
* @return the matrices for Q and R
*/
public static Matrix[] qr_fact_househ(Matrix a) {
return qr_fact_househ.qr_fact_househ(a);
}
/**
* Computes a QR-factorization for Matrix a using Givens rotations.
* @param a Matrix to factor
* @return the matrices for Q and R
*/
public static Matrix[] qr_fact_givens(Matrix a) {
return qr_fact_givens.qr_fact_givens(a);
}
/**
* ------------------------------------------------------
* SOLVING A MATRIX SYSTEM GIVEN A VECTOR B USING:
* LU FACTORIZATION
* QR FACTORIZATION
* ------------------------------------------------------
*/
/**
* Uses LU factored matrix to solve for vector x.
* Assumes there is a solution.
* @param l The lower triangular matrix
* @param u The upper triangular matrix
* @param b The vector b in Ax = b
* @return The solution vector
*/
public static Vector solve_lu_b(Matrix l, Matrix u, Vector b) {
return solve_lu_b.solve_lu_b(l, u, b);
}
/**
* Uses QR factored matrix to solve for vector x.
* Assumes there is a solution.
* @param q The orthogonal matrix
* @param r The upper triangular matrix
* @param b The vector b in Ax = b
* @return The solution vector
*/
public static Vector solve_qr_b(Matrix q, Matrix r, Vector b) {
return solve_qr_b.solve_qr_b(q, r, b);
}
/**
* ------------------------------------------------------------
* POWER METHOD USED FOR PART 3 OF PROJECT - LESLIE MATRIX
* ------------------------------------------------------------
*/
/**
* Implements power method to find approximation
* of largest eigenvalue and corresponding eigenvector
* @param a The nxn matrix
* @param tol The error tolerance
* @param u An initial approximation vector
* @return The approximated eigenvalue, eigenvector,
* and number of iterations for desired tolerance
*/
public static PowerObject power_method(Matrix a, double tol, Vector u) {
return power_method.power_method(a, tol, u);
}
/**
* -----------------------------------------------------------------
* MISCELLANEOUS OPERATIONS:
* add(Matrix, Matrix)
* subtract(Matrix, Matrix)
* multiply(Matrix, Matrix)
* multiply(Matrix, scalar)
*
* add(Vector, Vector)
* subtract(Vector, Vector)
* multiply(Vector, scalar)
* dotProduct(Vector, Vector)
*
* multiply(Matrix, Vector)
* multiply(Vector, Matrix)
*
* -----------------------------------------------------------------
*/
/**
* Adds two matrices' values together
* @param a The first matrix
* @param b The second matrix
* @return The matrix of containing the sum
* @throws IllegalArgumentException if the given
* matrices have different dimensions
*/
public static Matrix add(Matrix a, Matrix b) {
if (a.rows() != b.rows() || a.columns() != b.columns()) {
throw new IllegalArgumentException("Rows and columns are not equal");
}
Matrix sum = new Matrix(a.rows(), a.columns());
double sumValue;
for (int row = 0; row < a.rows(); row++) {
for (int column = 0; column < a.columns(); column++) {
sumValue = a.get(row, column) + b.get(row, column);
sum.set(row, column, sumValue);
}
}
return sum;
}
/**
* Subtracts two matrices' values
* @param a The first matrix
* @param b The second matrix
* @return The matrix of containing the difference
* @throws IllegalArgumentException if the given
* matrices have different dimensions
*/
public static Matrix subtract(Matrix a, Matrix b) {
if (a.rows() != b.rows() || a.columns() != b.columns()) {
throw new IllegalArgumentException("Rows and columns are not equal");
}
Matrix difference = new Matrix(a.rows(), a.columns());
double differenceValue;
for (int row = 0; row < a.rows(); row++) {
for (int column = 0; column < a.columns(); column++) {
differenceValue = a.get(row, column) - b.get(row, column);
difference.set(row, column, differenceValue);
}
}
return difference;
}
/**
* Multiplies two matrices
* @param a The first matrix
* @param b The second matrix
* @return The matrix containing the product
* @throws IllegalArgumentException if the given
* matrices' dimensions cannot be multiplied
*/
public static Matrix multiply(Matrix a, Matrix b) {
/*
For two matrices to be multiplied, if
a is m x n, b must be n x y where y
is a positive integer.
*/
if (a.columns() != b.rows()) {
throw new IllegalArgumentException("A's columns must be the same as B's rows");
}
Matrix product = new Matrix(a.rows(), b.columns());
double sum;
double[] row;
double[] column;
for (int rowA = 0; rowA < a.rows(); rowA++) {
sum = 0;
row = a.row(rowA);
for (int colB = 0; colB < b.columns(); colB++) {
sum = 0;
column = b.column(colB);
for (int i = 0; i < row.length; i++) {
sum += row[i] * column[i];
}
product.set(rowA, colB, sum);
}
}
return product;
}
/**
* Multiplies a matrix by a scalar
* @param a The matrix
* @param scalar The constant to multiply by
* @return The matrix containing the product
*/
public static Matrix multiply(Matrix a, double scalar) {
Matrix product = new Matrix(a.rows(), a.columns());
for (int i = 0; i < a.rows(); i++) {
for (int j = 0; j < a.columns(); j++) {
product.set(i, j, scalar * a.get(i, j));
}
}
return product;
}
/**
* Adds 2 vectors together.
* @param u Vector to add
* @param v Vector to add
* @return resulting vector of adding u and v together
*/
public static Vector add(Vector u, Vector v) {
Vector sum = new Vector(u.rows());
double sumValue;
for (int row = 0; row < u.rows(); row++) {
sumValue = u.get(row) + v.get(row);
sum.set(row, sumValue);
}
return sum;
}
/**
* Subtracts two vectors
* @param a The first vector
* @param b The second vector
* @return The difference vector
* @throws IllegalArgumentException Vectors' lengths do not match
*/
public static Vector subtract(Vector a, Vector b) {
if (a.numElements() != b.numElements()) {
throw new IllegalArgumentException("Vectors' number of elements are not equal");
}
Vector x = new Vector(a.numElements());
for (int i = 0; i < a.numElements(); i++) {
x.set(i, a.get(i) - b.get(i));
}
return x;
}
/**
* Multiplies a vector by a scalar
* @param a The vector
* @param scalar The constant to multiply by
* @return The vector containing the product
*/
public static Vector multiply(Vector a, double scalar) {
Vector product = new Vector(a.numElements());
for (int i = 0; i < a.numElements(); i++) {
product.set(i, scalar * a.get(i));
}
return product;
}
/**
* Multiplies a matrix by a vector
* @param a The matrix
* @param x The vector
* @return The vector containing the product
* @throws IllegalArgumentException if the given
* matrix's and vector's dimensions cannot be multiplied
*/
public static Vector multiply(Matrix a, Vector x) {
if (a.columns() != x.rows()) {
throw new IllegalArgumentException("A's columns must be the same as B's rows");
}
Vector product = new Vector(a.rows());
double sum;
double[] row;
double[] column;
for (int rowA = 0; rowA < a.rows(); rowA++) {
sum = 0;
row = a.row(rowA);
for (int i = 0; i < row.length; i++) {
sum += row[i] * x.get(i);
}
product.set(rowA, sum);
}
return product;
}
/**
* Multiplies a vector by a matrix.
* @param u The vector
* @param uTranspose The matrix
* @return The matrix containing the product between a vector and matrix
*/
public static Matrix multiply(Vector u, Matrix uTranspose) {
Matrix vector = new Matrix(u);
return multiply(vector, uTranspose);
}
/**
* Calculates the dot product of two vectors.
* @param one The first vector
* @param two The second vector
* @return The dot product of the two vectors
* @throws IllegalArgumentException if the two vectors are not the same length
*/
public static double dotProduct(Vector one, Vector two) throws IllegalArgumentException {
if (one.rows() != two.rows()) {
throw new IllegalArgumentException("Vectors not same length");
}
double sum = 0;
for (int i = 0; i < one.rows(); i++) {
sum += one.get(i) * two.get(i);
}
return sum;
}
}