Skip to content
This repository was archived by the owner on May 8, 2019. It is now read-only.

Commit 3075fe6

Browse files
committed
Deeplearning4j - 使用nd4j导入tensorflow模型
1 parent 86992a8 commit 3075fe6

2 files changed

+152
-0
lines changed
Binary file not shown.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,152 @@
1+
# Deeplearning4j - 使用nd4j导入tensorflow模型
2+
3+
在dl4j-example里面新增了模型导入的例子,这里简单的说一下。
4+
5+
---
6+
7+
在dl4j新版本的特性介绍:https://github.com/deeplearning4j/deeplearning4j-docs/blob/releasenotes_100a/releasenotes.md 中,对于nd4j的模型导入进行了特别强调。
8+
```
9+
ND4J: New Features
10+
11+
Technology preview of tensorflow import added (supports 1.4.0 and up)
12+
```
13+
其中一项就是对于tf模型的导入提供了功能预览版本,所支持的tf版本为1.4版本及其以上。
14+
15+
并于最近增加了导入tensorflow模型的示例代码,导入模型为 MINST 手写数字分类模型。从代码注释上面来看,因为是预览版本,目前只支持cpu运行,还不支持gpu的加速。
16+
17+
<center>![资源文件列表.png-23.3kB][1]</center>
18+
19+
并且提供了如上的文件,用于本次示例的测试。
20+
21+
1. freeze_model_after.py 和 generate_model.py 是生成模型的 python 文件。
22+
2. frozen_model.pb 为tensorflow的模型文件
23+
3. input_*.csv 和 input_*.shape为配套的特征数据文件。csv文件存放的是特征数据,一个特征一行;shape文件保存的是输入模型时的形状。
24+
4. prediction 文件同理,为预测的标签数据文件。
25+
26+
**注:** 使用该示例的时候,最好 IDE 已经安装了的相对的 lombok 插件。
27+
28+
# 资源文件夹
29+
```
30+
//Python code for this can be found in resources/import/tensorflow under generate_model.py and freeze_model_after.py
31+
//Input node/Placeholder in this graph is names "input"
32+
//Output node/op in this graph is names "output"
33+
public final static String BASE_DIR = "import/tensorflow";
34+
```
35+
首先定义了一个根目录用于寻找对应的文件。
36+
37+
接下来在主函数中获取模型文件的绝对路径
38+
```
39+
final String FROZEN_MLP = new ClassPathResource(BASE_DIR + "/frozen_model.pb").getFile().getPath();
40+
41+
```
42+
43+
# 读取tf中的占位符输入
44+
```
45+
//Load placeholder inputs and corresponding predictions generated from tensorflow
46+
Map<String, INDArray> inputsPredictions = readPlaceholdersAndPredictions();
47+
```
48+
这里面所用`readPlaceholdersAndPredictions`方法的全部代码如下:
49+
```
50+
//A simple helper function to load the inputs and corresponding outputs generated from tensorflow
51+
//Two cases: {input_a,prediction_a} and {input_b,prediction_b}
52+
protected static Map<String, INDArray> readPlaceholdersAndPredictions() throws IOException {
53+
String[] toReadList = {"input_a", "input_b", "prediction_a", "prediction_b"};
54+
Map<String, INDArray> arraysFromPython = new HashMap<>();
55+
for (int i = 0; i < toReadList.length; i++) {
56+
String varShapePath = new ClassPathResource(BASE_DIR + "/" + toReadList[i] + ".shape").getFile().getPath();
57+
String varValuePath = new ClassPathResource(BASE_DIR + "/" + toReadList[i] + ".csv").getFile().getPath();
58+
int[] varShape = Nd4j.readNumpy(varShapePath, ",").data().asInt();
59+
float[] varContents = Nd4j.readNumpy(varValuePath).data().asFloat();
60+
arraysFromPython.put(toReadList[i], Nd4j.create(varContents).reshape(varShape));
61+
}
62+
return arraysFromPython;
63+
}
64+
```
65+
这段代码不难理解,就是把前缀为`toReadList`数组内容中的数据成对读取出来,并且转换成为INDArray对象,并且返回回去。
66+
67+
# 模型读取
68+
```
69+
//Load the graph into samediff
70+
val graph = TFGraphMapper.getInstance().importGraph(new File(FROZEN_MLP));
71+
```
72+
这里面的 val 并非java 10提供的变量自动推断,而是 lombok 所提供的功能。
73+
74+
# 数据关联
75+
```
76+
//libnd4j executor
77+
//running with input_a array expecting to get prediction_a
78+
graph.associateArrayWithVariable(inputsPredictions.get("input_a"), graph.variableMap().get("input"));
79+
```
80+
这段代码是将从文件中读取出来的 `input_a` INDArray关联模型的数据。
81+
82+
# 模型预测
83+
```
84+
val executioner = new NativeGraphExecutioner();
85+
val results = executioner.executeGraph(graph); //returns an array of the outputs
86+
INDArray libnd4jPred = ((INDArray[]) results)[0];
87+
System.out.println("LIBND4J exec prediction for input_a:\n" + libnd4jPred);
88+
```
89+
模型预测,并且获取模型的结果输出。并且将其打印到控制台上。
90+
91+
# 结果判断
92+
```
93+
if (libnd4jPred.equals(inputsPredictions.get("prediction_a"))) {
94+
//this is true and therefore predictions are equal
95+
System.out.println("Predictions are equal to tensorflow");
96+
} else {
97+
throw new RuntimeException("Predictions don't match!");
98+
}
99+
```
100+
用于判断结果预测,和所给的标签是否相同
101+
102+
# 使用不同的API用于预测 input_b 的值
103+
```
104+
//Now to run with the samediff executor, with input_b array expecting to get prediction_b
105+
val graphSD = TFGraphMapper.getInstance().importGraph(new File(FROZEN_MLP)); //Reimport graph here, necessary for the 1.0 alpha release
106+
graphSD.associateArrayWithVariable(inputsPredictions.get("input_b"), graph.variableMap().get("input"));
107+
INDArray samediffPred = graphSD.execAndEndResult();
108+
System.out.println("SameDiff exec prediction for input_b:\n" + samediffPred);
109+
if (samediffPred.equals(inputsPredictions.get("prediction_b"))) {
110+
//this is true and therefore predictions are equal
111+
System.out.println("Predictions are equal to tensorflow");
112+
}
113+
```
114+
115+
# 对模型进行新增op
116+
```
117+
//add to graph to demonstrate pytorch like capability
118+
System.out.println("Adding new op to graph..");
119+
SDVariable linspaceConstant = graphSD.var("linspace", Nd4j.linspace(1, 10, 10));
120+
SDVariable totalOutput = graphSD.getVariable("output").add(linspaceConstant);
121+
INDArray totalOutputArr = totalOutput.eval();
122+
System.out.println(totalOutputArr);
123+
```
124+
这个代码的意思就是对原有模型添加新的操作。
125+
126+
1. 首先使用`graphSD.var("linspace", Nd4j.linspace(1, 10, 10))`获取[1,2,3 ... 10],10个整数的向量
127+
2. `graphSD.getVariable("output").add(linspaceConstant);`将这个向量加入到模型的输出中。
128+
129+
# 整体输出
130+
```
131+
LIBND4J exec prediction for input_a:
132+
[[ 0, 0, 0, 0, 0, 0, 0, 1.0000, 0, 0]]
133+
Predictions are equal to tensorflow
134+
22:39:16,498 WARN ~ No input found for Add and op name mmul
135+
22:39:16,498 WARN ~ No input found for Add_1 and op name mmul
136+
SameDiff exec prediction for input_b:
137+
[[ 0, 0, 1.0000, 0, 0, 0, 0, 0, 0, 0]]
138+
Predictions are equal to tensorflow
139+
Adding new op to graph..
140+
[[ 1.0000, 2.0000, 4.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000, 10.0000]]
141+
```
142+
在最后我们可以看到,因为增加了新的op操作, 模型的原本输出`[[ 0, 0, 1.0000, 0, 0, 0, 0, 0, 0, 0]]` 加上了`[1,2,3 ... 10]`就会变成对应的`[[ 1.0000, 2.0000, 4.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000, 10.0000]]`
143+
144+
145+
---
146+
更多文档可以查看 https://github.com/sjsdfg/deeplearning4j-issues。
147+
你的star是我持续分享的动力
148+
149+
代码地址已经放在github上面,自行下载即可: https://github.com/sjsdfg/dl4j-tutorials
150+
151+
152+
[1]: http://static.zybuluo.com/ZzzJoe/zrkt70us7dx0dmnpsqjud2w0/%E8%B5%84%E6%BA%90%E6%96%87%E4%BB%B6%E5%88%97%E8%A1%A8.png

0 commit comments

Comments
 (0)