-
Notifications
You must be signed in to change notification settings - Fork 1
/
pytorch.py
214 lines (176 loc) · 8.03 KB
/
pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from __future__ import print_function, division
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import time
import os
import copy
from torch.optim import lr_scheduler
from torchvision import datasets, models, transforms
from torch.utils.data import Dataset
from skimage import io, transform
from PIL import Image
from audiotospeech import drawProgressBar
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#plt.ion()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class tfSpeechDataSet(Dataset):
"""TF Speech recognition labels dataset."""
def __init__(self, csv_file, root_dir, transform=None):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.to_tensor = transforms.ToTensor()
self.imageFrame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
self.image_arr = np.asarray(self.imageFrame.iloc[:,1])
self.label_arr = np.asarray(self.imageFrame.iloc[:,2])
self.data_len = len(self.imageFrame.index)
def __len__(self):
return len(self.imageFrame)
def __getitem__(self, idx):
img_name = os.path.join(self.root_dir,self.image_arr[idx])
image = Image.open(img_name).convert(mode='RGB')#io.imread(img_name)
image_as_tensor = self.to_tensor(image)
image_label = self.label_arr[idx]
if self.transform:
image_as_tensor = self.transform(image)
return (image_as_tensor,image_label)
class utils():
def __init__(self,dataset):
self.dataset = dataset
POSSIBLE_LABELS = 'yes no up down left right on off stop go silence unknown'.split()
self.id2name = {i: name for i, name in enumerate(POSSIBLE_LABELS)}
self.name2id = {name: i for i, name in self.id2name.items()}
def show_wave(self):
for i in range(1,len(self.dataset)):
sample = self.dataset[i]
ax = plt.subplot(1, 4, i + 1)
plt.tight_layout()
ax.set_title('Sample #{}'.format(self.id2name[int(sample['labels'])]))
ax.axis('off')
# show_wave(sample['image'])
if i == 3:
plt.show()
break
plt.imshow(sample['image'])
plt.pause(0.1) # pause a bit so that plots are updated
def main():
PATH = os.getcwd()+os.sep+'images'
TRAINPATH = PATH+os.sep+'train'
TESTPATH = PATH+os.sep+'test'
VALIDATIONPATH = PATH+os.sep+'valid'
data_transforms = {
'train': transforms.Compose([
transforms.Resize(256),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'valid': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
testdata = tfSpeechDataSet('test.csv',TESTPATH,transform=data_transforms['test'])
traindata = tfSpeechDataSet('train.csv',TRAINPATH,transform=data_transforms['train'])
validdata = tfSpeechDataSet('valid.csv',VALIDATIONPATH,transform=data_transforms['valid'])
# image_datasets = {'test': testdata,
# 'train': traindata,
# 'valid': validdata}
# dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=1,
# shuffle=True, num_workers=4)
# for x in ['train', 'valid']}
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'valid','test']:
if phase == 'train':
dataloaders = torch.utils.data.DataLoader(dataset=traindata,
batch_size=32,
shuffle=False)
scheduler.step()
model.train() # Set model to training mode
elif phase == 'valid':
dataloaders = torch.utils.data.DataLoader(dataset=validdata,
batch_size=32,
shuffle=False)
model.eval() # Set model to evaluate mode
else:
dataloaders = torch.utils.data.DataLoader(dataset=testdata,
batch_size=32,
shuffle=False)
model.eval()
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for i,(inputs, labels) in enumerate(dataloaders):
drawProgressBar(i/len(dataloaders))
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders)
epoch_acc = running_corrects.double() / len(dataloaders)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
if __name__ == '__main__':
main()