-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathivim_fitting.py
executable file
·1111 lines (970 loc) · 57 KB
/
ivim_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
"""
Compute IVIM parameters maps fitting IVIM model voxel-wise and using parallel threading.
Created on Tue Jul 4 17:45:43 2017
@author: slevy
"""
import matplotlib.pyplot as plt
import numpy as np
import time
import multiprocessing
from lmfit import Model
import os
import nibabel as nib
import argparse
from datetime import datetime
class IVIMfit:
def __init__(self, bvals, voxels_values, voxels_idx, model, ofit_dir='', multithreading=True, save_plots=True):
self.bvals = bvals
self.voxels_values = voxels_values
self.voxels_idx = voxels_idx
self.ofit_dir = ofit_dir
self.multithreading = multithreading
self.ivim_metrics_all_voxels = {}
self.plot_dir = ''
self.save_plots = save_plots
self.model = model
# define the fit approach as global variable to avoid having to define a fit_warpper function for each fit approach (needed in pool.map for multithreading)
global approach
approach = model
def run_fit(self, true_params=[], verbose=1):
"""Run defined fit."""
if self.save_plots:
# create dedicated plot directory
self.plot_dir = "%s_plots" % datetime.now().strftime("%y%m%d%H%M%S%f")[0:13]
os.makedirs(self.ofit_dir + "/" + self.plot_dir)
n_vox_to_fit = self.voxels_values.shape[0]
if verbose:
print('=== ' + str(n_vox_to_fit) + ' voxels to be fitted with representation: '+self.model+' ===')
# measure duration
start_time = time.time()
if true_params == []:
fit_func_args = [(vox_val,
self.bvals,
self.ofit_dir + "/" + self.plot_dir + "/z{:d}_y{:d}_x{:d}.png".format(self.voxels_idx[2][vox], self.voxels_idx[1][vox], self.voxels_idx[0][vox]),
n_vox_to_fit,
{},
verbose) for vox, vox_val in enumerate(self.voxels_values)]
else:
fit_func_args = [(vox_val,
self.bvals,
self.ofit_dir + "/" + self.plot_dir + "/z{:d}_y{:d}_x{:d}.png".format(self.voxels_idx[2][vox], self.voxels_idx[1][vox], self.voxels_idx[0][vox]),
n_vox_to_fit,
true_params[vox],
verbose) for vox, vox_val in enumerate(self.voxels_values)]
if self.multithreading:
# ---- on all available workers ----
pool = multiprocessing.Pool()
# set each matching item into a tuple
self.ivim_metrics_all_voxels = pool.map(fit_warpper, fit_func_args)
pool.close()
pool.join()
else:
# ---- on one worker ----
# ivim_params_all_vox = map(fit_func, iter(values_voxels_to_fit), [bvals] * n_vox_to_fit, [ofolder + "/" + plot_dir+"/z{2}_y{1}_x{0}.png".format(*vox_coord) for vox_coord in np.array(idx_voxels_to_fit).T], [n_vox_to_fit] * n_vox_to_fit)
self.ivim_metrics_all_voxels = list(map(fit_warpper, fit_func_args))
elapsed_time = time.time() - start_time
if verbose:
print('\nFitting done! Elapsed time: ' + str(int(round(elapsed_time))) + 's\n')
def main(dwi_fname, bval_fname, mask_fname, model, ofolder, multithreading):
"""Main."""
# load data
dwi = nib.load(dwi_fname).get_data()
bvals = np.loadtxt(bval_fname, delimiter=None)
mask_nii = nib.load(mask_fname)
mask = mask_nii.get_data()
# initialize outputs
if not os.path.exists(ofolder):
os.mkdir(ofolder)
print("\nDirectory", ofolder, "created.\n")
else:
print("\nDirectory", ofolder, "already exists.\n")
# prepare IVIM fit object
ivim_fit = IVIMfit(bvals=bvals,
voxels_values=dwi[mask > 0, :],
voxels_idx=np.where(mask > 0),
ofit_dir=ofolder,
multithreading=multithreading,
model=model)
# run fit
ivim_fit.run_fit()
# save params values to arrays
S0_map = np.zeros(dwi.shape[0:3])
D_map = np.zeros(dwi.shape[0:3])
FivimXDstar_map = np.zeros(dwi.shape[0:3])
AIC_map = np.zeros(dwi.shape[0:3])
R2_map = np.zeros(dwi.shape[0:3])
exception_map = np.zeros(dwi.shape[0:3])
S0_map[ivim_fit.voxels_idx] = [voxel["S0"] for voxel in ivim_fit.ivim_metrics_all_voxels]
D_map[ivim_fit.voxels_idx] = [voxel["D"] for voxel in ivim_fit.ivim_metrics_all_voxels]
AIC_map[ivim_fit.voxels_idx] = [voxel["AIC"] for voxel in ivim_fit.ivim_metrics_all_voxels]
R2_map[ivim_fit.voxels_idx] = [voxel["R2"] for voxel in ivim_fit.ivim_metrics_all_voxels]
exception_map[ivim_fit.voxels_idx] = [voxel["exception"] for voxel in ivim_fit.ivim_metrics_all_voxels]
if model != 'FivimXDstar':
Fivim_map = np.zeros(dwi.shape[0:3])
Dstar_map = np.zeros(dwi.shape[0:3])
Fivim_map[ivim_fit.voxels_idx] = [voxel["Fivim"] for voxel in ivim_fit.ivim_metrics_all_voxels]
Dstar_map[ivim_fit.voxels_idx] = [voxel["Dstar"] for voxel in ivim_fit.ivim_metrics_all_voxels]
FivimXDstar_map = np.multiply(Fivim_map, Dstar_map)
else:
FivimXDstar_map[ivim_fit.voxels_idx] = [voxel["FivimXDstar"] for voxel in ivim_fit.ivim_metrics_all_voxels]
if model == 'combine':
S0init_map = np.zeros(dwi.shape[0:3])
Dinit_map = np.zeros(dwi.shape[0:3])
S0init_map[ivim_fit.voxels_idx] = [voxel["S0init"] for voxel in ivim_fit.ivim_metrics_all_voxels]
Dinit_map[ivim_fit.voxels_idx] = [voxel["Dinit"] for voxel in ivim_fit.ivim_metrics_all_voxels]
# save as NIFTI images
S0_map_nii = nib.Nifti1Image(S0_map.copy(), mask_nii.affine, mask_nii.header); nib.save(S0_map_nii, ofolder+"/S0_map.nii.gz")
D_map_nii = nib.Nifti1Image(D_map.copy(), mask_nii.affine, mask_nii.header); nib.save(D_map_nii, ofolder+"/D_map.nii.gz")
FivimXDstar_map_nii = nib.Nifti1Image(FivimXDstar_map.copy(), mask_nii.affine, mask_nii.header); nib.save(FivimXDstar_map_nii, ofolder+"/FivimXDstar_map.nii.gz")
AIC_map_nii = nib.Nifti1Image(AIC_map.copy(), mask_nii.affine, mask_nii.header); nib.save(AIC_map_nii, ofolder+"/AIC_map.nii.gz")
R2_map_nii = nib.Nifti1Image(R2_map.copy(), mask_nii.affine, mask_nii.header); nib.save(R2_map_nii, ofolder+"/R2_map.nii.gz")
exception_map_nii = nib.Nifti1Image(exception_map.copy(), mask_nii.affine, mask_nii.header); nib.save(exception_map_nii, ofolder+"/exception_map.nii.gz")
if model != 'FivimXDstar':
Fivim_map_nii = nib.Nifti1Image(Fivim_map.copy(), mask_nii.affine, mask_nii.header); nib.save(Fivim_map_nii, ofolder + "/Fivim_map.nii.gz")
Dstar_map_nii = nib.Nifti1Image(Dstar_map.copy(), mask_nii.affine, mask_nii.header); nib.save(Dstar_map_nii, ofolder + "/Dstar_map.nii.gz")
if model == '1shot_initD_noise':
noise_map = np.zeros(dwi.shape[0:3])
noise_map[ivim_fit.voxels_idx] = [voxel["noise"] for voxel in ivim_fit.ivim_metrics_all_voxels]
noise_map_nii = nib.Nifti1Image(noise_map.copy(), mask_nii.affine, mask_nii.header); nib.save(noise_map_nii, ofolder + "/noise_map.nii.gz")
if model == 'combine':
S0init_map_nii = nib.Nifti1Image(S0init_map.copy(), mask_nii.affine, mask_nii.header); nib.save(S0init_map_nii, ofolder + "/S0init_map.nii.gz")
Dinit_map_nii = nib.Nifti1Image(Dinit_map.copy(), mask_nii.affine, mask_nii.header); nib.save(Dinit_map_nii, ofolder + "/Dinit_map.nii.gz")
print('==> Results are available in folder: '+ofolder)
def D_log_representation(x, lnS0, D):
"""Logarithm representation of the diffusion-weighted signal decay"""
return lnS0 - x*D
def ivim_1pool_model(x, S0, D, Fivim, Dstar):
"""1-pool IVIM representation: ivim_1pool_model(x, amp, cen, wid)"""
return S0 * np.exp(-x*D) * (Fivim*np.exp(-x*Dstar) + 1 - Fivim)
def ivim_1pool_model_with_noise(x, S0, D, Fivim, Dstar, noise):
"""1-pool IVIM representation: ivim_1pool_model(x, amp, cen, wid)"""
return np.sqrt(np.square(S0 * np.exp(-x*D) * (Fivim*np.exp(-x*Dstar) + 1 - Fivim)) + noise**2)
def ivim_lemke2010_model(x, S0, D, Fivim, Dstar, TE, T2tiss, T2bl):
"""IVIM representation from Lemke et al., MRM 2010: ivim_lemke2010_model(x, amp, cen, wid)"""
# return S0 * ( (1 - Fivim)*(1 - np.exp(-TR/T1tiss))*np.exp(-TE/T2tiss - x*D) + Fivim*(1 - np.exp(-TR/T1bl))*np.exp(-TE/T2bl - x*(D + Dstar)) ) / ( (1 - Fivim)*np.exp(-TE/T2tiss)*(1 - np.exp(TR/T1tiss)) + Fivim*np.exp(-TE/T2bl)*(1 - np.exp(-TR/T1bl)) )
# remove terms related to TR as TR was long
return S0 * ( (1 - Fivim)*np.exp(-TE/T2tiss - x*D) + Fivim*np.exp(-TE/T2bl - x*(D + Dstar)) ) / ( (1 - Fivim)*np.exp(-TE/T2tiss) + Fivim*np.exp(-TE/T2bl) )
def kurtosis_representation(x, S0, ADC, K):
"""Taylor expansion of the diffusion signal: """
return S0 * np.exp(-x*ADC + ((x*ADC)**2)*K/6)
def get_r2(fit_res):
"""Compute the coefficient of determination of a fit model."
:param fit_res: ModelResult structure (from lmfit) obtained after performing fit
:return: R-squared of fit
"""
sum_squared_error = np.sum(np.square(fit_res.residual))
sum_squared_deviation_from_mean = np.sum(np.square(fit_res.data - np.mean(fit_res.data)))
return 1. - sum_squared_error / sum_squared_deviation_from_mean
def plot_fit(bvals, S, fit_res):
"""plot final fit"""
font = {'size': 20}
plt.rc('font', **font)
plt.figure(figsize=(12, 9))
ax = plt.gca()
plt.title('Model: ' + fit_res.model.name[6:-1] + ' - Algo: ' + fit_res.method + '\n')
xwide = np.linspace(0, np.max(bvals), int(np.max(bvals) * 2))
ax.plot(bvals, np.log(S), color='b', linestyle='', marker='.', markersize=8, label='data')
ax.plot(xwide, np.log(fit_res.eval(x=xwide)), color='r', linestyle='-', linewidth=1, label='final fit')
ax.grid(which='major', linestyle=':', alpha=0.9)
ax.grid(which='minor', linestyle=':', alpha=0.3)
ax.minorticks_on()
ax.legend(loc=1, prop={'size': 15})
plt.xlabel('b-value (s/mm$^2$)', fontsize=24)
plt.ylabel('ln(S)', fontsize=24)
ax.set_xlim(xmin=0)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# add annotations
if fit_res.approach == '1shot_initD_noise':
params_value_to_display = "S$_0$=%.1f\nf$_{IVIM}$=%.3f\nD$^*$=%.3e mm$^2$/s\nD=%.3e mm$^2$/s\nNoise=%.1f\nFit stats\n Chi$^2$=%.1f\n AIC=%.3f\n R$^2$=%.3f" % (
fit_res.params["S0"].value, fit_res.params["Fivim"].value, fit_res.params["Dstar"].value,
fit_res.params["D"].value, fit_res.params["noise"].value, fit_res.chisqr, fit_res.aic, get_r2(fit_res))
elif fit_res.approach == 'FivimXDstar':
params_value_to_display = "S$_0$=%.1f\nADC=%.3e mm$^2$/s\nK=%.3e/s\nFit stats\n Chi$^2$=%.1f\n AIC=%.3f\n R$^2$=%.3f" % (
fit_res.params["S0"].value, fit_res.params["ADC"].value, fit_res.params["K"].value, fit_res.chisqr,
fit_res.aic, get_r2(fit_res))
else:
params_value_to_display = "S$_0$=%.1f\nf$_{IVIM}$=%.3f\nD$^*$=%.3e mm$^2$/s\nD=%.3e mm$^2$/s\nFit stats\n Chi$^2$=%.1f\n AIC=%.3f\n R$^2$=%.3f" % (
fit_res.params["S0"].value, fit_res.params["Fivim"].value, fit_res.params["Dstar"].value,
fit_res.params["D"].value, fit_res.chisqr, fit_res.aic, get_r2(fit_res))
bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.9)
ax.text(.01, .01,
params_value_to_display,
transform=ax.transAxes,
size=15,
bbox=bbox_props)
return ax
def fit_1pool_separate(S, bvals, oplot_fname, n_vox_to_fit=1, bval_thr=500):
"""
Fit IVIM 1-pool model: S0*( Fivim*exp(-x*Dstar) + 1-Fivim )*exp(-x*D)
:param vox_coord: coordinates of the voxel to be fit
:param dwi_data: diffusion-weighted 4D data (x, y, z, b-values)
:param bvals: b-values acquired
:param mask: binary mask defining the voxels to fit
:param ofolder_plot: path of the output folder for plots
:return:
"""
ivim_params = {}
# fit high b-values to get a first estimate of D
p_highb = np.poly1d(np.polyfit(bvals[bvals >= bval_thr], np.log(S[bvals >= bval_thr]), 1))
ivim_params["D"] = -p_highb.c[0]
# fit S0, Fivim, D*
ivim_model = Model(ivim_1pool_model)
# set params initial values and bounds
ivim_model.set_param_hint('S0', value=S[0], min=0, max=10 * S[0])
ivim_model.set_param_hint('Fivim', value=.05, min=0, max=.99)
ivim_model.set_param_hint('Dstar', value=0.01, min=0, max=.9)
ivim_model.set_param_hint('D', value=ivim_params["D"], vary=False) # fix D
fitting_params = ivim_model.make_params()
# run fit algo
fit_res = ivim_model.fit(S, x=bvals, params=fitting_params)
# save fit params
ivim_params["S0"] = fit_res.params["S0"].value
ivim_params["Fivim"] = fit_res.params["Fivim"].value
ivim_params["Dstar"] = fit_res.params["Dstar"].value
# plot and save fit
fit_res.approach = '1pool_separate'
ax = plot_fit(bvals, S, fit_res)
ax.plot(np.linspace(0, np.max(bvals), np.max(bvals) * 2),
-ivim_params["D"] * np.linspace(0, np.max(bvals), np.max(bvals) * 2) + p_highb.c[1], color='orange',
linestyle='-', linewidth=1, label='fit b$\leq$' + str(bval_thr))
plt.savefig(oplot_fname)
plt.close()
# plot final fit
# fit_res.plot()
# plt.savefig(oplot_fname)
# plt.close()
font = {'size': 20}
plt.rc('font', **font)
plt.figure(oplot_fname, figsize=(12, 9))
ax = plt.gca()
plt.title('Signal fit using biexponentional IVIM model\n')
xwide = np.linspace(0, np.max(bvals), np.max(bvals) * 2)
ax.plot(bvals, np.log(S), color='b', linestyle='', marker='.', markersize=8, label='data')
ax.plot(xwide, -ivim_params["D"] * xwide + p_highb.c[1], color='orange', linestyle='-', linewidth=1,
label='fit b$\leq$' + str(bval_thr))
ax.plot(xwide, np.log(ivim_params["S0"] * np.exp(-xwide * ivim_params["D"]) * (
ivim_params["Fivim"] * np.exp(-xwide * ivim_params["Dstar"]) + 1 - ivim_params["Fivim"])),
color='r', linestyle='-', linewidth=1, label='fit all b')
ax.grid(which='major', linestyle=':', alpha=0.9)
ax.grid(which='minor', linestyle=':', alpha=0.3)
ax.minorticks_on()
ax.legend()
plt.xlabel('b-value (s/mm$^2$)', fontsize=24)
plt.ylabel('ln(S)', fontsize=24)
ax.set_xlim(xmin=0)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.savefig(oplot_fname)
plt.close()
# display progress by counting number of plots in directory
plot_dir = os.path.dirname(os.path.realpath(oplot_fname))
n_voxel_done = len([plot for plot in os.walk(plot_dir).next()[2] if plot[-4:] == ".png"])
print(str(100 * n_voxel_done / n_vox_to_fit) + '% of voxels done.')
return ivim_params
def fit_1pool_1shot(S, bvals, oplot_fname, n_vox_to_fit=1):
"""
Fit IVIM 1-pool model: S0*( Fivim*exp(-x*Dstar) + 1-Fivim )*exp(-x*D)
:param vox_coord: coordinates of the voxel to be fit
:param dwi_data: diffusion-weighted 4D data (x, y, z, b-values)
:param bvals: b-values acquired
:param mask: binary mask defining the voxels to fit
:param ofolder_plot: path of the output folder for plots
:return:
"""
ivim_params = {}
# fit S0, Fivim, D*
ivim_model = Model(ivim_1pool_model)
# set params initial values and bounds
ivim_model.set_param_hint('S0', value=S[0], min=0, max=10 * S[0])
ivim_model.set_param_hint('Fivim', value=.02, min=0, max=.99)
ivim_model.set_param_hint('Dstar', value=1e-3, min=0, max=1e-1)
ivim_model.set_param_hint('D', value=1e-4, min=0, max=1e-3)
fitting_params = ivim_model.make_params()
# run fit algo
fit_res = ivim_model.fit(S, x=bvals, params=fitting_params, method='cg')
# save fit params
ivim_params["S0"] = fit_res.params["S0"].value
ivim_params["Fivim"] = fit_res.params["Fivim"].value
ivim_params["Dstar"] = fit_res.params["Dstar"].value
ivim_params["D"] = fit_res.params["D"].value
# plot and save fit
fit_res.approach = '1pool_1shot'
ax = plot_fit(bvals, S, fit_res)
plt.savefig(oplot_fname)
plt.close()
# display progress by counting number of plots in directory
plot_dir = os.path.dirname(os.path.realpath(oplot_fname))
n_voxel_done = len([plot for plot in os.walk(plot_dir).next()[2] if plot[-4:] == ".png"])
print(str(100. * n_voxel_done / n_vox_to_fit) + '% of voxels done.')
return ivim_params
def fit_lemke2010(S, bvals, oplot_fname, n_vox_to_fit=1):
"""
Fit IVIM 1-pool model: S0*( Fivim*exp(-x*Dstar) + 1-Fivim )*exp(-x*D)
:param vox_coord: coordinates of the voxel to be fit
:param dwi_data: diffusion-weighted 4D data (x, y, z, b-values)
:param bvals: b-values acquired
:param mask: binary mask defining the voxels to fit
:param ofolder_plot: path of the output folder for plots
:return:
"""
ivim_params = {}
# fit S0, Fivim, D*
ivim_model = Model(ivim_lemke2010_model)
# set params initial values and bounds
ivim_model.set_param_hint('S0', value=S[0]) # , min=0, max=10*S[0])
ivim_model.set_param_hint('Fivim', value=.05) # , min=0, max=.99)
ivim_model.set_param_hint('Dstar', value=1e-3) # , min=0, max=1e-1)
ivim_model.set_param_hint('D', value=3e-4) # , min=0, max=1e-3)
# set fixed values
# ivim_model.set_param_hint('TR', value=3300, vary=False) # fix TR
ivim_model.set_param_hint('TE', value=51.6, vary=False) # fix TE
# ivim_model.set_param_hint('T1tiss', value=np.mean([1313, 1182]), vary=False) # T1 in spinal cord from Massire et al., NeuroImage 2016 (mean T1 across GM and WM at 7T)
ivim_model.set_param_hint('T2tiss', value=50.,
vary=False) # T2 in spinal cord from Massire et al., Proceedings ISMRM 2016, abstract #1130
# ivim_model.set_param_hint('T1bl', value=2100, vary=False) # T1 in blood at 7T (ms) from Zhang et al., MRM 2013
ivim_model.set_param_hint('T2bl', value=235.,
vary=False) # T2 in blood (value linearly interpolated from 1.5 et 3T values)
fitting_params = ivim_model.make_params()
# run fit algo
fit_res = ivim_model.fit(S, x=bvals, params=fitting_params, method='bfgs', nan_policy='propagate')
# save fit params
ivim_params["S0"] = fit_res.params["S0"].value
ivim_params["Fivim"] = fit_res.params["Fivim"].value
ivim_params["D"] = fit_res.params["D"].value
ivim_params["Dstar"] = fit_res.params["Dstar"].value
# plot and save fit
fit_res.approach = 'lemke2010'
ax = plot_fit(bvals, S, fit_res)
plt.savefig(oplot_fname)
plt.close()
# display progress by counting number of plots in directory
plot_dir = os.path.dirname(os.path.realpath(oplot_fname))
n_voxel_done = len([plot for plot in os.walk(plot_dir).next()[2] if plot[-4:] == ".png"])
print(str(100 * n_voxel_done / n_vox_to_fit) + '% of voxels done.')
return ivim_params
def fit_2shots(S, bvals, oplot_fname, n_vox_to_fit=1, true_params={}, verbose=1, bval_thr=500):
"""
v2: adapted bounds for D and D* to adapt to real data and D fixed to the initial value resulting from the fit of
b-values >= bval_thr only.
"""
ivim_params = {"exception": 0}
try:
# 1) fit high b-values to get a first estimate of D
p_highb = np.poly1d(np.polyfit(bvals[bval_thr <= bvals], np.log(S[bval_thr <= bvals]), 1))
# ivim_params["Dinit"] = -p_highb.c[0]
# ivim_params["S0init"] = np.exp(p_highb.c[1])
D_representation = Model(D_log_representation)
D_representation.set_param_hint('D', value=-p_highb.c[0], min=0.15e-3, max=4.5e-3)
D_representation.set_param_hint('lnS0', value=p_highb.c[1], min=0.5 * p_highb.c[1],
max=1.5 * p_highb.c[1])
D_fit_contraints = D_representation.make_params()
D_fit = D_representation.fit(np.log(S[bval_thr <= bvals]), x=bvals[bval_thr <= bvals],
params=D_fit_contraints, method='cg')
ivim_params["Dinit"] = D_fit.params["D"].value
ivim_params["S0(1-f)"] = np.exp(D_fit.params["lnS0"].value)
# 2) fit S0, Fivim, D* and D with biexponential model using the previously determined D as initial value
ivim_model = Model(ivim_1pool_model)
ivim_model.set_param_hint('S0', value=1.2 * ivim_params["S0(1-f)"], min=0.7 * ivim_params["S0(1-f)"],
max=1.7 * ivim_params["S0(1-f)"])
ivim_model.set_param_hint('Fivim', value=0.1, min=0, max=0.35)
ivim_model.set_param_hint('Dstar', value=(ivim_params["Dinit"] + 35.5e-3) / 2.,
min=ivim_params["Dinit"],
max=35.5e-3)
# ivim_model.set_param_hint('D', value=ivim_params["Dinit"], min=0.2e-3, max=ivim_params["Dinit"]*1.02)
ivim_model.set_param_hint('D', value=ivim_params["Dinit"], vary=False) # fix D to Dinit
ivim_model_constraints = ivim_model.make_params()
# run fit algo
fit_res_DE = ivim_model.fit(S, x=bvals, params=ivim_model_constraints, method='differential_evolution')
# fit_res = ivim_model.fit(S[bvals >= 25], x=bvals[bvals >= 25], params=fitting_params, method='cg') # try to fit only b-values >=25
# 3) fit S0, Fivim, D* and D with biexponential model using the previously determined D as initial value
ivim_model = Model(ivim_1pool_model)
ivim_model.set_param_hint('S0', value=fit_res_DE.params["S0"].value,
min=0.95 * fit_res_DE.params["S0"].value,
max=1.05 * fit_res_DE.params["S0"].value)
if fit_res_DE.params["Fivim"].value <= 1e-12:
ivim_model.set_param_hint('Fivim', value=fit_res_DE.params["Fivim"].value, min=0, max=0.05)
else:
ivim_model.set_param_hint('Fivim', value=fit_res_DE.params["Fivim"].value,
min=0.95 * fit_res_DE.params["Fivim"].value,
max=1.05 * fit_res_DE.params["Fivim"].value)
ivim_model.set_param_hint('Dstar', value=fit_res_DE.params["Dstar"].value,
min=0.95 * fit_res_DE.params["Dstar"].value,
max=1.05 * fit_res_DE.params["Dstar"].value)
# ivim_model.set_param_hint('D', value=fit_res_DE.params["D"].value, min=0.95*fit_res_DE.params["D"].value, max=1.05*fit_res_DE.params["D"].value)
ivim_model.set_param_hint('D', value=ivim_params["Dinit"], vary=False) # fix D to Dinit
ivim_model_constraints = ivim_model.make_params()
# run fit algo
fit_res = ivim_model.fit(S, x=bvals, params=ivim_model_constraints, method='differential_evolution')
# fit_res = ivim_model.fit(S[bvals >= 25], x=bvals[bvals >= 25], params=fitting_params, method='cg') # try to fit only b-values >=25
# save fit params
ivim_params["S0"] = fit_res.params["S0"].value
ivim_params["Fivim"] = fit_res.params["Fivim"].value
ivim_params["D"] = fit_res.params["D"].value
ivim_params["Dstar"] = fit_res.params["Dstar"].value
ivim_params["AIC"] = fit_res.aic
ivim_params["R2"] = get_r2(fit_res)
fit_res.approach = '1shot_initD_v2'
plot_dir = os.path.dirname(os.path.realpath(oplot_fname))
if plot_dir[:2] not in ['//', '/']: # BECAREFUL: SOME OUTPUT FOLDER NAME MIGHT NOT WORK HERE DEPENDING ON THE PLATFORM
# plot and save fit
ax = plot_fit(bvals, S, fit_res)
xwide = np.linspace(0, np.max(bvals), np.max(bvals) * 2)
ax.plot(xwide, -ivim_params["Dinit"] * xwide + np.log(ivim_params["S0(1-f)"]), color='orange',
linestyle='-', linewidth=1, label='D and S0 initialization')
ax.plot(xwide, -0.2e-3 * ivim_params["Dinit"] * xwide + 1.7 * np.log(ivim_params["S0(1-f)"]),
color='orange', linestyle='--', linewidth=1, label='Lower bound for D and S0')
ax.plot(xwide, -ivim_params["Dinit"] * 1.2 * xwide + 0.7 * np.log(ivim_params["S0(1-f)"]),
color='orange', linestyle='--', linewidth=1, label='Upper bound for D and S0')
ax.legend(loc=1, prop={'size': 15})
if true_params != {}:
true_params_value_to_display = "TRUE VALUES\nS$_0$=%.1f\nf$_{IVIM}$=%.3f\nD$^*$=%.3e mm$^2$/s\nD=%.3e mm$^2$/s" % (
true_params['S0'], true_params['Fivim'], true_params['Dstar'], true_params['D'])
bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.5)
ax.text(.92, .01,
true_params_value_to_display,
horizontalalignment='right',
verticalalignment='bottom',
transform=ax.transAxes,
size=15,
bbox=bbox_props)
# ivim_params["fig"] = plt.gcf()
# save figure and display progress by counting number of plots in directory
plt.savefig(oplot_fname)
plt.close()
n_voxel_done = len([plot for plot in os.walk(plot_dir).next()[2] if plot[-4:] == ".png"])
else:
plot_filename = oplot_fname.split('/')[-1].split('.')[0]
z_idx, y_idx, x_idx = int(plot_filename.split('z')[1].split('_')[0]), int(
plot_filename.split('y')[1].split('_')[0]), int(plot_filename.split('x')[1])
dim_cube = pow(n_vox_to_fit, 1. / 3)
n_voxel_done = z_idx * dim_cube * dim_cube + y_idx * dim_cube + x_idx
if verbose:
print(str(100. * n_voxel_done / n_vox_to_fit) + '% of voxels done.')
except ValueError as err_detail:
print('/!\\/!\\/!\\ VALUE ERROR /!\\/!\\/!\\: ' + str(err_detail))
print('--> ignoring voxel (' + oplot_fname.split('/')[-1].split(',')[0] + ')')
ivim_params["S0(1-f)"] = 0
ivim_params["Dinit"] = 0
ivim_params["S0"] = 0
ivim_params["Fivim"] = 0
ivim_params["D"] = 0
ivim_params["Dstar"] = 0
ivim_params["AIC"] = 0
ivim_params["R2"] = 0
ivim_params["exception"] = 1
return ivim_params
def fit_1shot_initD(S, bvals, oplot_fname, n_vox_to_fit=1, true_params={}, bval_thr=500):
"""
Fit IVIM 1-pool model: S0*( Fivim*exp(-x*Dstar) + 1-Fivim )*exp(-x*D)
"""
ivim_params = {"exception": 0}
try:
# 1) fit high b-values to get a first estimate of D
p_highb = np.poly1d(np.polyfit(bvals[bval_thr <= bvals], np.log(S[bval_thr <= bvals]), 1))
# ivim_params["Dinit"] = -p_highb.c[0]
# ivim_params["S0init"] = np.exp(p_highb.c[1])
D_representation = Model(D_log_representation)
D_representation.set_param_hint('D', value=-p_highb.c[0], min=0.2e-3, max=2.95e-3)
D_representation.set_param_hint('lnS0', value=p_highb.c[1], min=0.5 * p_highb.c[1],
max=1.5 * p_highb.c[1])
D_fit_contraints = D_representation.make_params()
D_fit = D_representation.fit(np.log(S[bval_thr <= bvals]), x=bvals[bval_thr <= bvals],
params=D_fit_contraints, method='cg')
ivim_params["Dinit"] = D_fit.params["D"].value
ivim_params["S0(1-f)"] = np.exp(D_fit.params["lnS0"].value)
# 2) fit S0, Fivim, D* and D with biexponential model using the previously determined D as initial value
ivim_model = Model(ivim_1pool_model)
ivim_model.set_param_hint('S0', value=1.2 * ivim_params["S0(1-f)"], min=0.7 * ivim_params["S0(1-f)"],
max=1.5 * ivim_params["S0(1-f)"])
ivim_model.set_param_hint('Fivim', value=0.06, min=0, max=0.3)
ivim_model.set_param_hint('Dstar', value=5e-3, min=3e-3, max=35.1e-3)
ivim_model.set_param_hint('D', value=ivim_params["Dinit"], min=0.2e-3, max=2.95e-3)
# ivim_model.set_param_hint('D', value=ivim_params["Dinit"], vary=False) # fix D to Dinit
ivim_model_constraints = ivim_model.make_params()
# run fit algo
fit_res = ivim_model.fit(S, x=bvals, params=ivim_model_constraints, method='differential_evolution')
# fit_res = ivim_model.fit(S[bvals >= 25], x=bvals[bvals >= 25], params=fitting_params, method='cg') # try to fit only b-values >=25
# save fit params
ivim_params["S0"] = fit_res.params["S0"].value
ivim_params["Fivim"] = fit_res.params["Fivim"].value
ivim_params["D"] = fit_res.params["D"].value
ivim_params["Dstar"] = fit_res.params["Dstar"].value
ivim_params["AIC"] = fit_res.aic
ivim_params["R2"] = get_r2(fit_res)
plot_dir = os.path.dirname(os.path.realpath(oplot_fname))
# plot and save fit if ofolder selected
fit_res.approach = '1shot_initD'
if plot_dir[:2] != '//': # BECAREFUL: THIS WON'T WORK IF THE SELECTED OUTPUT FOLDER IS '/'
ax = plot_fit(bvals, S, fit_res)
xwide = np.linspace(0, np.max(bvals), np.max(bvals) * 2)
ax.plot(xwide, -ivim_params["Dinit"] * xwide + np.log(ivim_params["S0(1-f)"]), color='orange',
linestyle='-', linewidth=1, label='D and S0 initialization')
ax.plot(xwide, -0.2e-3 * ivim_params["Dinit"] * xwide + 1.5 * np.log(ivim_params["S0(1-f)"]),
color='orange', linestyle='--', linewidth=1, label='Lower bound for D and S0')
ax.plot(xwide, -2.9e-3 * xwide + 0.7 * np.log(ivim_params["S0(1-f)"]), color='orange',
linestyle='--',
linewidth=1, label='Upper bound for D and S0')
ax.legend(loc=1, prop={'size': 15})
if true_params != {}:
true_params_value_to_display = "TRUE VALUES\nS$_0$=%.1f\nf$_{IVIM}$=%.3f\nD$^*$=%.3e mm$^2$/s\nD=%.3e mm$^2$/s" % (
true_params['S0'], true_params['Fivim'], true_params['Dstar'], true_params['D'])
bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.5)
ax.text(.92, .01,
true_params_value_to_display,
horizontalalignment='right',
verticalalignment='bottom',
transform=ax.transAxes,
size=15,
bbox=bbox_props)
# save figure and display progress by counting number of plots in directory
plt.savefig(oplot_fname)
n_voxel_done = len([plot for plot in os.walk(plot_dir).next()[2] if plot[-4:] == ".png"])
plt.close()
else:
plot_filename = oplot_fname.split('/')[-1].split('.')[0]
z_idx, y_idx, x_idx = int(plot_filename.split('z')[1].split('_')[0]), int(
plot_filename.split('y')[1].split('_')[0]), int(plot_filename.split('x')[1])
dim_cube = pow(n_vox_to_fit, 1. / 3)
n_voxel_done = z_idx * dim_cube * dim_cube + y_idx * dim_cube + x_idx
print(str(100. * n_voxel_done / n_vox_to_fit) + '% of voxels done.')
except ValueError as err_detail:
print('/!\\/!\\/!\\ VALUE ERROR /!\\/!\\/!\\: ' + str(err_detail))
print('--> ignoring voxel (' + oplot_fname.split('/')[-1].split(',')[0] + ')')
ivim_params["S0(1-f)"] = 0
ivim_params["Dinit"] = 0
ivim_params["S0"] = 0
ivim_params["Fivim"] = 0
ivim_params["D"] = 0
ivim_params["Dstar"] = 0
ivim_params["AIC"] = 0
ivim_params["R2"] = 0
ivim_params["exception"] = 1
return ivim_params
def fit_1shot_initD_v2(S, bvals, oplot_fname, n_vox_to_fit=1, true_params={}, verbose=1, bval_thr=400):
"""
v2: adapted bounds for D and D* to adapt to real data and D NOT FIXED to the initial value resulting from the fit
of b-values >= bval_thr only.
"""
ivim_params = {"exception": 0}
try:
# 1) get first estimate of D
if sum(bval_thr <= bvals) > 1:
# by fiting high b-values
p_highb = np.poly1d(np.polyfit(bvals[bval_thr <= bvals], np.log(S[bval_thr <= bvals]), 1))
D_representation = Model(D_log_representation)
D_representation.set_param_hint('D', value=-p_highb.c[0], min=0.15e-3, max=4.5e-3)
D_representation.set_param_hint('lnS0', value=p_highb.c[1], min=0.5 * p_highb.c[1],
max=1.5 * p_highb.c[1])
D_fit_contraints = D_representation.make_params()
D_fit = D_representation.fit(np.log(S[bval_thr <= bvals]), x=bvals[bval_thr <= bvals],
params=D_fit_contraints, method='cg')
ivim_params["Dinit"] = D_fit.params["D"].value
ivim_params["S0(1-f)"] = np.exp(D_fit.params["lnS0"].value)
else:
# if no high b-value available
ivim_params["Dinit"] = np.mean([0.15e-3, 4.5e-3]) # mean of min and max bounds
ivim_params["S0(1-f)"] = max(S) # max signal value
# 2) fit S0, Fivim, D* and D with biexponential model using the previously determined D as initial value
ivim_model = Model(ivim_1pool_model)
ivim_model.set_param_hint('S0', value=1.2 * ivim_params["S0(1-f)"], min=0.7 * ivim_params["S0(1-f)"],
max=1.7 * ivim_params["S0(1-f)"])
ivim_model.set_param_hint('Fivim', value=0.1, min=0, max=0.20)
ivim_model.set_param_hint('Dstar', value=ivim_params["Dinit"] * 10,
min=ivim_params["Dinit"] * 2, max=50e-3)
ivim_model.set_param_hint('D', value=ivim_params["Dinit"], min=0.15e-3, max=ivim_params["Dinit"] * 1.2)
# ivim_model.set_param_hint('D', value=ivim_params["Dinit"], vary=False) # fix D to Dinit
ivim_model_constraints = ivim_model.make_params()
# run fit algo
fit_res_DE = ivim_model.fit(S, x=bvals, params=ivim_model_constraints, method='differential_evolution')
# 3) refine fit
ivim_model = Model(ivim_1pool_model)
ivim_model.set_param_hint('S0', value=fit_res_DE.params["S0"].value,
min=0.95 * fit_res_DE.params["S0"].value,
max=1.05 * fit_res_DE.params["S0"].value)
if fit_res_DE.params["Fivim"].value <= 1e-12:
ivim_model.set_param_hint('Fivim', value=fit_res_DE.params["Fivim"].value, min=0, max=0.05)
else:
ivim_model.set_param_hint('Fivim', value=fit_res_DE.params["Fivim"].value,
min=0.95 * fit_res_DE.params["Fivim"].value,
max=1.05 * fit_res_DE.params["Fivim"].value)
ivim_model.set_param_hint('Dstar', value=fit_res_DE.params["Dstar"].value,
min=0.95 * fit_res_DE.params["Dstar"].value,
max=1.05 * fit_res_DE.params["Dstar"].value)
ivim_model.set_param_hint('D', value=fit_res_DE.params["D"].value,
min=0.95 * fit_res_DE.params["D"].value,
max=1.05 * fit_res_DE.params["D"].value)
ivim_model_constraints = ivim_model.make_params()
# run fit algo
fit_res = ivim_model.fit(S, x=bvals, params=ivim_model_constraints, method='differential_evolution')
# save fit params
ivim_params["S0"] = fit_res.params["S0"].value
ivim_params["Fivim"] = fit_res.params["Fivim"].value
ivim_params["D"] = fit_res.params["D"].value
ivim_params["Dstar"] = fit_res.params["Dstar"].value
ivim_params["AIC"] = fit_res.aic
ivim_params["AICc"] = fit_res.aic + (2*4**2 + 2*4) / (len(bvals) - 4 - 1) # corrected AIC to take the small sample size into accout: AICc = AIC + (2k^2 + 2k) / n - k -1 where k is the number of parameters and n the sample size
ivim_params["R2"] = get_r2(fit_res)
fit_res.approach = '1shot_initD_v3'
plot_dir = os.path.dirname(os.path.realpath(oplot_fname))
if plot_dir[:2] not in ['//', '/']: # BECAREFUL: SOME OUTPUT FOLDER NAME MIGHT NOT WORK HERE DEPENDING ON THE PLATFORM
# plot and save fit
ax = plot_fit(bvals, S, fit_res)
xwide = np.linspace(0, np.max(bvals), int(np.max(bvals) * 2))
ax.plot(xwide, -ivim_params["Dinit"] * xwide + np.log(ivim_params["S0(1-f)"]), color='orange',
linestyle='-', linewidth=1, label='D and S0 initialization')
ax.plot(xwide, -0.2e-3 * ivim_params["Dinit"] * xwide + 1.7 * np.log(ivim_params["S0(1-f)"]),
color='orange', linestyle='--', linewidth=1, label='Lower bound for D and S0')
ax.plot(xwide, -ivim_params["Dinit"] * 1.2 * xwide + 0.7 * np.log(ivim_params["S0(1-f)"]),
color='orange', linestyle='--', linewidth=1, label='Upper bound for D and S0')
ax.legend(loc=1, prop={'size': 15})
if true_params != {}:
true_params_value_to_display = "TRUE VALUES\nS$_0$=%.1f\nf$_{IVIM}$=%.3f\nD$^*$=%.3e mm$^2$/s\nD=%.3e mm$^2$/s" % (
true_params['S0'], true_params['Fivim'], true_params['Dstar'], true_params['D'])
bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.5)
ax.text(.92, .01,
true_params_value_to_display,
horizontalalignment='right',
verticalalignment='bottom',
transform=ax.transAxes,
size=15,
bbox=bbox_props)
# save figure and display progress by counting number of plots in directory
plt.savefig(oplot_fname)
plt.close()
n_voxel_done = len([plot for plot in next(os.walk(plot_dir))[2] if plot[-4:] == ".png"])
else:
plot_filename = oplot_fname.split('/')[-1].split('.')[0]
z_idx, y_idx, x_idx = int(plot_filename.split('z')[1].split('_')[0]), int(
plot_filename.split('y')[1].split('_')[0]), int(plot_filename.split('x')[1])
dim_cube = pow(n_vox_to_fit, 1. / 3)
n_voxel_done = z_idx * dim_cube * dim_cube + y_idx * dim_cube + x_idx
if verbose:
print(str(100. * n_voxel_done / n_vox_to_fit) + '% of voxels done.')
except ValueError as err_detail:
print('/!\\/!\\/!\\ VALUE ERROR /!\\/!\\/!\\: ' + str(err_detail))
print('--> ignoring voxel (' + oplot_fname.split('/')[-1].split(',')[0] + ')')
ivim_params["S0(1-f)"] = 0
ivim_params["Dinit"] = 0
ivim_params["S0"] = 0
ivim_params["Fivim"] = 0
ivim_params["D"] = 0
ivim_params["Dstar"] = 0
ivim_params["AIC"] = 0
ivim_params["R2"] = 0
ivim_params["exception"] = 1
except IndexError as err_detail:
print('/!\\/!\\/!\\ INDEX ERROR /!\\/!\\/!\\: ' + str(
err_detail) + '\nMIGHT BE DUE TO numpy.polyfit UNDER UBUNTU 16 WHICH RETURNS ONLY ONE COEFFICIENT INSTEAD OF TWO UNDER MACOSX...')
print('--> ignoring voxel (' + oplot_fname.split('/')[-1].split(',')[0] + ')')
ivim_params["S0(1-f)"] = 0
ivim_params["Dinit"] = 0
ivim_params["S0"] = 0
ivim_params["Fivim"] = 0
ivim_params["D"] = 0
ivim_params["Dstar"] = 0
ivim_params["AIC"] = 0
ivim_params["R2"] = 0
ivim_params["exception"] = 1
return ivim_params
def fit_1shot_initD_noise(S, bvals, oplot_fname, n_vox_to_fit=1, bval_thr=500):
"""
Fit IVIM 1-pool model: S0*( Fivim*exp(-x*Dstar) + 1-Fivim )*exp(-x*D)
:param vox_coord: coordinates of the voxel to be fit
:param dwi_data: diffusion-weighted 4D data (x, y, z, b-values)
:param bvals: b-values acquired
:param mask: binary mask defining the voxels to fit
:param ofolder_plot: path of the output folder for plots
:return:
"""
ivim_params = {"exception": 0}
try:
# 1) fit high b-values to get a first estimate of D
p_highb = np.poly1d(np.polyfit(bvals[bvals >= bval_thr], np.log(S[bvals >= bval_thr]), 1))
ivim_params["D"] = -p_highb.c[0]
# 2) fit S0, Fivim, D* and D with biexponential model using the previously determined D as initial value
ivim_model = Model(ivim_1pool_model_with_noise)
# set params initial values and bounds
ivim_model.set_param_hint('S0', value=S[0], min=S[0], max=10 * S[0])
ivim_model.set_param_hint('Fivim', value=.02, min=0, max=.99)
ivim_model.set_param_hint('Dstar', value=1e-3, min=0, max=1e-1)
ivim_model.set_param_hint('D', value=ivim_params["D"], min=0.5 * ivim_params["D"],
max=1.5 * ivim_params["D"])
ivim_model.set_param_hint('noise', value=0, min=-np.mean(S), max=np.mean(S))
fitting_params = ivim_model.make_params()
# run fit algo
fit_res = ivim_model.fit(S, x=bvals, params=fitting_params, method='cg')
# save fit params
ivim_params["S0"] = fit_res.params["S0"].value
ivim_params["Fivim"] = fit_res.params["Fivim"].value
ivim_params["D"] = fit_res.params["D"].value
ivim_params["Dstar"] = fit_res.params["Dstar"].value
ivim_params["noise"] = fit_res.params["noise"].value
ivim_params["AIC"] = fit_res.aic
ivim_params["R2"] = get_r2(fit_res)
# plot and save fit
fit_res.approach = '1shot_initD_noise'
ax = plot_fit(bvals, S, fit_res)
xwide = np.linspace(0, np.max(bvals), np.max(bvals) * 2)
ax.plot(xwide, p_highb.c[0] * xwide + p_highb.c[1], color='orange', linestyle='-', linewidth=1,
label='fit b$\leq$' + str(bval_thr))
ax.plot(xwide, 0.5 * p_highb.c[0] * xwide + p_highb.c[1], color='orange', linestyle='--', linewidth=1,
label='Lower bound for D')
ax.plot(xwide, 1.5 * p_highb.c[0] * xwide + p_highb.c[1], color='orange', linestyle='--', linewidth=1,
label='Upper bound for D')
ax.legend(loc=1, prop={'size': 15})
plt.savefig(oplot_fname)
plt.close()
# display progress by counting number of plots in directory
plot_dir = os.path.dirname(os.path.realpath(oplot_fname))
n_voxel_done = len([plot for plot in os.walk(plot_dir).next()[2] if plot[-4:] == ".png"])
print(str(100. * n_voxel_done / n_vox_to_fit) + '% of voxels done.')
except ValueError as err_detail:
print('/!\\/!\\/!\\ VALUE ERROR /!\\/!\\/!\\: ' + str(err_detail))
print('--> ignoring voxel (' + oplot_fname.split('/')[-1].split(',')[0] + ')')
ivim_params["S0"] = 0
ivim_params["Fivim"] = 0
ivim_params["D"] = 0
ivim_params["Dstar"] = 0
ivim_params["noise"] = 0
ivim_params["AIC"] = 0
ivim_params["R2"] = 0
ivim_params["exception"] = 1
return ivim_params
def fit_combine_2shots_1shot_lemke(S, bvals, oplot_fname, n_vox_to_fit=1, bval_thr=500):
"""
Fit IVIM 1-pool model: S0*( Fivim*exp(-x*Dstar) + 1-Fivim )*exp(-x*D)
:param vox_coord: coordinates of the voxel to be fit
:param dwi_data: diffusion-weighted 4D data (x, y, z, b-values)
:param bvals: b-values acquired
:param mask: binary mask defining the voxels to fit
:param ofolder_plot: path of the output folder for plots
:return:
"""
ivim_params = {"exception": 0}
try:
# 1) fit high b-values to get a first estimate of D
p_highb = np.poly1d(np.polyfit(bvals[bval_thr <= bvals], np.log(S[bval_thr <= bvals]), 1))
# p_highb = np.poly1d(np.polyfit(bvals[(bvals <= 5) | (bval_thr <= bvals)], np.log(S[(bvals <= 5) | (bval_thr <= bvals)]), 1))
# p_highb = np.poly1d(np.polyfit(bvals[(bvals == bvals[0]) | (bval_thr <= bvals)], np.log(S[(bvals == bvals[0]) | (bval_thr <= bvals)]), 1))
# ivim_params["Dinit"] = -p_highb.c[0]
# ivim_params["S0init"] = np.exp(p_highb.c[1])
D_representation = Model(D_log_representation)
D_representation.set_param_hint('D', value=0.6e-3, min=0.2e-3, max=2.9e-3)
D_representation.set_param_hint('lnS0', value=p_highb.c[1], min=0.5 * p_highb.c[1],
max=2 * p_highb.c[1])
D_fit_contraints = D_representation.make_params()
D_fit = D_representation.fit(np.log(S[bval_thr <= bvals]), x=bvals[bval_thr <= bvals],
params=D_fit_contraints, method='brute')
ivim_params["Dinit"] = D_fit.params["D"].value
ivim_params["S0(1-f)"] = np.exp(D_fit.params["lnS0"].value)
# 2) fit S0, Fivim, D* and D with biexponential model using the previously determined D as initial value
ivim_model = Model(ivim_1pool_model)
ivim_model.set_param_hint('S0', value=1.2 * ivim_params["S0(1-f)"], min=0.5 * ivim_params["S0(1-f)"],
max=2. * ivim_params["S0(1-f)"])
ivim_model.set_param_hint('Fivim', value=0.06, min=0, max=0.3)
ivim_model.set_param_hint('Dstar', value=5e-3, min=3e-3, max=35e-3)
ivim_model.set_param_hint('D', value=ivim_params["Dinit"], min=0.2e-3, max=2.9e-3)
# ivim_model.set_param_hint('D', value=ivim_params["Dinit"], vary=False) # fix D to Dinit
ivim_model_constraints = ivim_model.make_params()
# run fit algo
fit_res = ivim_model.fit(S, x=bvals, params=ivim_model_constraints, method='brute')
# fit_res = ivim_model.fit(S[bvals >= 25], x=bvals[bvals >= 25], params=fitting_params, method='cg') # try to fit only b-values >=25
# save fit params
ivim_params["S0"] = fit_res.params["S0"].value
ivim_params["Fivim"] = fit_res.params["Fivim"].value
ivim_params["Dstar"] = fit_res.params["Dstar"].value
ivim_params["D"] = fit_res.params["D"].value
# 3) fit Lemke 2010 model (T1, T2 corrected)
ivim_lemke_model = Model(ivim_lemke2010_model)
# set params initial values and bounds
ivim_lemke_model.set_param_hint('S0', value=fit_res.params["S0"].value, min=0.7 * fit_res.params["S0"],
max=1.7 * fit_res.params["S0"])
ivim_lemke_model.set_param_hint('Fivim', value=fit_res.params["Fivim"].value, min=0, max=.3)
ivim_lemke_model.set_param_hint('Dstar', value=fit_res.params["Dstar"].value, min=3e-3, max=35e-3)
ivim_lemke_model.set_param_hint('D', value=fit_res.params["D"].value, min=0.2e-3, max=2.9e-3)
# ivim_lemke_model.set_param_hint('D', value=ivim_params["Dinit"], vary=False) # fix D to Dinit
# set fixed values
# ivim_model.set_param_hint('TR', value=3300, vary=False) # fix TR
ivim_lemke_model.set_param_hint('TE', value=51.6, vary=False) # fix TE
# ivim_model.set_param_hint('T1tiss', value=np.mean([1313, 1182]), vary=False) # T1 in spinal cord from Massire et al., NeuroImage 2016 (mean T1 across GM and WM at 7T)
ivim_lemke_model.set_param_hint('T2tiss', value=50.,
vary=False) # T2 in spinal cord from Massire et al., Proceedings ISMRM 2016, abstract #1130
# ivim_model.set_param_hint('T1bl', value=2100, vary=False) # T1 in blood at 7T (ms) from Zhang et al., MRM 2013
ivim_lemke_model.set_param_hint('T2bl', value=235.,
vary=False) # T2 in blood (value linearly interpolated from 1.5 et 3T values)
ivim_lemke_model_constraints = ivim_lemke_model.make_params()
# run fit algo
fit_lemke_res = ivim_lemke_model.fit(S, x=bvals, params=ivim_lemke_model_constraints, method='brute',
nan_policy='raise')
# fit_lemke_res = ivim_lemke_model.fit(S[bvals >= 25], x=bvals[bvals >= 25], params=fitting_params, method='cg', nan_policy='raise') # try to fit only b-values >=25
# save fit params
ivim_params["S0"] = fit_lemke_res.params["S0"].value
ivim_params["Fivim"] = fit_lemke_res.params["Fivim"].value
ivim_params["D"] = fit_lemke_res.params["D"].value
ivim_params["Dstar"] = fit_lemke_res.params["Dstar"].value
ivim_params["AIC"] = fit_lemke_res.aic
ivim_params["R2"] = get_r2(fit_lemke_res)
# plot and save fit
fit_lemke_res.approach = 'combine'
ax = plot_fit(bvals, S, fit_lemke_res)
xwide = np.linspace(0, np.max(bvals), np.max(bvals) * 2)
ax.plot(xwide, -ivim_params["Dinit"] * xwide + np.log(ivim_params["S0(1-f)"]), color='orange',
linestyle='-', linewidth=1, label='D and S0 initialization')
ax.plot(xwide, -0.7 * ivim_params["Dinit"] * xwide + 1.2 * np.log(ivim_params["S0(1-f)"]),
color='orange',
linestyle='--', linewidth=1, label='Lower bound for D and S0')
ax.plot(xwide, -1.3 * ivim_params["Dinit"] * xwide + 0.8 * np.log(ivim_params["S0(1-f)"]),
color='orange',
linestyle='--', linewidth=1, label='Upper bound for D and S0')
ax.plot(xwide, np.log(fit_res.eval(x=xwide)), color='r', linestyle=':', linewidth=1,
label='biexponential fit initializing TE/T2 correction')
ax.legend(loc=1, prop={'size': 15})
ivim_params["fig"] = plt.gcf()
# save figure and display progress by counting number of plots in directory
plot_dir = os.path.dirname(os.path.realpath(oplot_fname))
if len(plot_dir.split('/')) > 2: # BECAREFUL: THIS WON'T WORK IF THE SELECTED OUTPUT FOLDER IS '/'
plt.savefig(oplot_fname)
n_voxel_done = len([plot for plot in os.walk(plot_dir).next()[2] if plot[-4:] == ".png"])
else:
plot_filename = oplot_fname.split('/')[-1].split('.')[0]
z_idx, y_idx, x_idx = int(plot_filename.split('z')[1][0]), int(plot_filename.split('y')[1][0]), int(
plot_filename.split('x')[1][0])
dim_cube = n_vox_to_fit ** (1 / 3)
n_voxel_done = z_idx * dim_cube * dim_cube + y_idx * dim_cube + x_idx
plt.close()
print(str(100. * n_voxel_done / n_vox_to_fit) + '% of voxels done.')
except ValueError as err_detail:
print('/!\\/!\\/!\\ VALUE ERROR /!\\/!\\/!\\: ' + str(err_detail))
print('--> ignoring voxel (' + oplot_fname.split('/')[-1].split(',')[0] + ')')
ivim_params["S0(1-f)"] = 0
ivim_params["Dinit"] = 0
ivim_params["S0"] = 0
ivim_params["Fivim"] = 0
ivim_params["D"] = 0
ivim_params["Dstar"] = 0
ivim_params["AIC"] = 0
ivim_params["R2"] = 0
ivim_params["exception"] = 1
return ivim_params
def fit_FivimXDstar(S, bvals, oplot_fname, n_vox_to_fit=1, bval_thr=500):
"""
Fit FivimXDstar directly
:param vox_coord: coordinates of the voxel to be fit
:param dwi_data: diffusion-weighted 4D data (x, y, z, b-values)
:param bvals: b-values acquired
:param mask: binary mask defining the voxels to fit
:param ofolder_plot: path of the output folder for plots
:return:
"""
ivim_params = {"exception": 0}
try:
# 1) fit high b-values to estimate pure D
p_highb = np.poly1d(
np.polyfit(bvals[(bvals <= 5) | (bval_thr <= bvals)], np.log(S[(bvals <= 5) | (bval_thr <= bvals)]),
1))
ivim_params["D"] = -p_highb.c[0]
# 2) fit Taylor expansion (until Kurtosis term) on low b-values
kurtosis_model = Model(kurtosis_representation)
# set params initial values and bounds
kurtosis_model.set_param_hint('S0', value=np.exp(p_highb.c[1]), min=0.9 * np.exp(p_highb.c[1]),
max=1.1 * np.exp(p_highb.c[1]))
# kurtosis_model.set_param_hint('S0', value=np.exp(p_highb.c[1]), vary=False)
kurtosis_model.set_param_hint('ADC', value=1.0e-3, min=0.0,
max=1.0e-4) # Apparent diffusion coefficient and fractional anisotropy in spinal cord: Age and cervical spondylosis–related changes Hatsuho Mamata MD, PhD Ferenc A. Jolesz MD Stephan E. Maier MD, PhD