forked from opensourceai/yolov3-tensorflow-cn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_weight.py
executable file
·127 lines (105 loc) · 5.1 KB
/
convert_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import sys
import wget
import time
import argparse
import tensorflow as tf
from core import yolov3, utils
class parser(argparse.ArgumentParser):
def __init__(self, description):
super(parser, self).__init__(description)
self.add_argument(
"--ckpt_file", "-cf", default='./checkpoint/yolov3.ckpt', type=str,
help="[default: %(default)s] The checkpoint file ...",
metavar="<CF>",
)
self.add_argument(
"--num_classes", "-nc", default=80, type=int,
help="[default: %(default)s] The number of classes ...",
metavar="<NC>",
)
self.add_argument(
"--anchors_path", "-ap", default="./data/coco_anchors.txt", type=str,
help="[default: %(default)s] The path of anchors ...",
metavar="<AP>",
)
self.add_argument(
"--weights_path", "-wp", default='./checkpoint/yolov3.weights', type=str,
help="[default: %(default)s] Download binary file with desired weights",
metavar="<WP>",
)
self.add_argument(
"--convert", "-cv", action='store_false',
help="[default: %(default)s] Downloading yolov3 weights and convert them",
)
self.add_argument(
"--freeze", "-fz", action='store_false',
help="[default: %(default)s] freeze the yolov3 graph to pb ...",
)
self.add_argument(
"--image_h", "-ih", default=416, type=int,
help="[default: %(default)s] The height of image, 416 or 608",
metavar="<IH>",
)
self.add_argument(
"--image_w", "-iw", default=416, type=int,
help="[default: %(default)s] The width of image, 416 or 608",
metavar="<IW>",
)
self.add_argument(
"--iou_threshold", "-it", default=0.5, type=float,
help="[default: %(default)s] The iou_threshold for gpu nms",
metavar="<IT>",
)
self.add_argument(
"--score_threshold", "-st", default=0.5, type=float, # 分数阈值
help="[default: %(default)s] The score_threshold for gpu nms",
metavar="<ST>",
)
def main(argv):
flags = parser(description="freeze yolov3 graph from checkpoint file").parse_args()
print("=> the input image size is [%d, %d]" % (flags.image_h, flags.image_w))
anchors = utils.get_anchors(flags.anchors_path, flags.image_h, flags.image_w)
# print(anchors)
# exit()
model = yolov3.yolov3(flags.num_classes, anchors)
with tf.Graph().as_default() as graph:
sess = tf.Session(graph=graph)
inputs = tf.placeholder(tf.float32, [1, flags.image_h, flags.image_w, 3]) # placeholder for detector inputs
print("=>", inputs)
with tf.variable_scope('yolov3'):
feature_map = model.forward(inputs, is_training=False) # 返回3个尺度的feature_map
# 获取网络给出绝对boxes(左上角,右下角)信息, 未经过最大抑制去除多余boxes
boxes, confs, probs = model.predict(feature_map)
scores = confs * probs
print("=>", boxes.name[:-2], scores.name[:-2])
# cpu 运行是恢复模型所需要的网络节点的名字
cpu_out_node_names = [boxes.name[:-2], scores.name[:-2]]
boxes, scores, labels = utils.gpu_nms(boxes, scores, flags.num_classes,
score_thresh=flags.score_threshold,
iou_thresh=flags.iou_threshold)
print("=>", boxes.name[:-2], scores.name[:-2], labels.name[:-2])
# gpu 运行是恢复模型所需要的网络节点的名字 , 直接运算得出最终结果
gpu_out_node_names = [boxes.name[:-2], scores.name[:-2], labels.name[:-2]]
feature_map_1, feature_map_2, feature_map_3 = feature_map
saver = tf.train.Saver(var_list=tf.global_variables(scope='yolov3'))
if flags.convert:
if not os.path.exists(flags.weights_path):
url = 'https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3.weights'
for i in range(3):
time.sleep(1)
print("=> %s does not exists ! " % flags.weights_path)
print("=> It will take a while to download it from %s" % url)
print('=> Downloading yolov3 weights ... ')
wget.download(url, flags.weights_path)
load_ops = utils.load_weights(tf.global_variables(scope='yolov3'), flags.weights_path)
sess.run(load_ops)
save_path = saver.save(sess, save_path=flags.ckpt_file)
print('=> model saved in path: {}'.format(save_path))
# print(flags.freeze)
if flags.freeze:
saver.restore(sess, flags.ckpt_file)
print('=> checkpoint file restored from ', flags.ckpt_file)
utils.freeze_graph(sess, './checkpoint/yolov3_cpu_nms.pb', cpu_out_node_names)
utils.freeze_graph(sess, './checkpoint/yolov3_gpu_nms.pb', gpu_out_node_names)
if __name__ == "__main__": main(sys.argv)