-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmu8.go
151 lines (135 loc) · 4.77 KB
/
mu8.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
package mu8
import (
"context"
"errors"
"math"
"math/rand"
)
// Genome represents a candidate for genetic algorithm selection.
// It is parametrized with the backing Gene type.
type Genome interface {
// Simulate runs the backing simulation which the genetic
// algorithm seeks to optimize. It returns a number quantifying
// how well the Genome did in the simulation. This is then
// used to compare between other Genomes during the Selection phase.
//
// The input context is cancelled when the optimization is terminated early
// by user or by an error encountered if using IMGA. The context should be used
// for long running simulations. It should not be used to pass
// values into the simulation
Simulate(context.Context) (fitness float64)
// GetGene gets ith gene in the Genome. It is expected the ith Genes
// of two Genomes in a Genetic Algorithm instance have matching types.
GetGene(i int) Gene
// Number of Genes in Genome.
Len() int
}
// Gene is the basic physical and functional unit of heredity.
type Gene interface {
// Splice modifies the receiver with the attributes of the argument. It should NOT
// modify the argument. Splice is called during breeding of multiple Genomes.
// It is expected Splice receives an argument matching the type of the receiver.
// The rng argument intends to aid with randomness and Splice implementation process.
Splice(rng *rand.Rand, g Gene)
// CloneFrom copies the Gene argument into the receiver, replacing all genetic information
// in receiving Gene.
CloneFrom(Gene)
// Mutate performs a random mutation on the receiver with the aid of rng.
Mutate(rng *rand.Rand)
}
// Mutate mutates the Genes in the Genome g, modifying g in place.
// The probability of a Gene being mutated is mutationRate/1.
func Mutate(g Genome, src rand.Source, mutationRate float64) {
switch {
case mutationRate == 0:
panic("can't mutate with zero mutation rate")
case mutationRate < 0 || mutationRate > 1:
panic("mutation rate outside valid bounds 0..1")
}
rng := rand.New(src)
for i := 0; i < g.Len(); i++ {
r := rng.Float64()
if r < mutationRate {
g.GetGene(i).Mutate(rng)
}
}
}
// Clone clones the Genes of src to dst. It does not
// modify src. dst should be initialized beforehand.
func Clone(dst, src Genome) error {
if dst == nil {
return errors.New("got nil destination for Clone")
} else if src == nil {
return errors.New("got nil source to Clone")
} else if dst.Len() != src.Len() {
return errors.New("destination and source mismatch")
}
for i := 0; i < dst.Len(); i++ {
dst.GetGene(i).CloneFrom(src.GetGene(i))
}
return nil
}
// GenomeGrad is a Genome that can be used with gradient descent.
type GenomeGrad interface {
Simulate(context.Context) (fitness float64)
GetGeneGrad(i int) GeneGrad
LenGrad() int
}
// GeneGrad is a Gene that can be used with gradient descent.
type GeneGrad interface {
SetValue(float64)
Value() float64
Step() float64
}
// Gradient computes the gradient of the GenomeGrad g using finite differences.
// It stores the result of the calculation to grad. The length of grad must match
// the number of Genes in g.
//
// # Use of newIndividual argument
//
// For the case when the GenomeGrad implementation cannot be reused after a call
// to Simulate, the newIndividual argument is used to reset the GenomeGrad to a
// known state. If newIndividual is nil then the same individual is used for all runs.
func Gradient[T GenomeGrad](ctx context.Context, grad []float64, startIndividual T, newIndividual func() T) error {
if startIndividual.LenGrad() != len(grad) {
panic("scratch length mismatch")
}
startFitness := startIndividual.Simulate(ctx)
for i := 0; i < startIndividual.LenGrad() && ctx.Err() == nil; i++ {
if newIndividual != nil {
blankSlate := newIndividual()
CloneGrad(blankSlate, startIndividual)
startIndividual = blankSlate
}
gene := startIndividual.GetGeneGrad(i)
start := gene.Value()
step := gene.Step()
if step == 0 {
return errors.New("zero step size")
}
gene.SetValue(start + step)
newFitness := startIndividual.Simulate(ctx)
if newFitness < 0 {
return ErrNegativeFitness
} else if math.IsNaN(newFitness) || math.IsInf(newFitness, 0) {
return ErrInvalidFitness
}
grad[i] = (newFitness - startFitness) / step
gene.SetValue(start) // Return gene to original value.
}
return ctx.Err()
}
// CloneGrad clones all the genes of src to dst. It does not modify src.
func CloneGrad(dst, src GenomeGrad) error {
if dst == nil {
return errors.New("got nil destination for Clone")
} else if src == nil {
return errors.New("got nil source to Clone")
} else if dst.LenGrad() != src.LenGrad() {
return errors.New("destination and source mismatch")
}
for i := 0; i < dst.LenGrad(); i++ {
dst.GetGeneGrad(i).SetValue(src.GetGeneGrad(i).Value())
}
return nil
}